

BK 878B, BK 879B Ponts RLC portables

Manuel d'utilisation

Sécurité

Les prescriptions de sécurité s'adressent à toute personne utilisant ou intervenant sur l'appareil.

NE JAMAIS UTILISER EN ATMOSPHERE EXPLOSIVE

Ne jamais utiliser l'appareil en présence de gaz ou liquides inflammables. L'utilisation d'un appareil électrique pourrait s'avérer dangereuse.

NE PAS FAIRE DE TEST SUR DES CIRCUITS SOUS TENSION

Le boitier de l'appareil ne doit pas être ouvert par l'utilisateur. La maintenance, le dépannage de doit être effectué que par du personnel qualifié et habilité.

NE JAMAIS MODIFIER L'APPAREIL

Ne jamais tenter de modifier ou réparer l'appareil. En cas de problème, retourner votre appareil au constructeur ou à votre distributeur

ATTENTION / DANGER

Les termes ATTENTION et DANGER sont utilisés dans ce manuel pour sensibiliser l'utilisateur aux risques et aux situations potentiellement dangereuses.

DANGER sensibilise l'utilisateur au fait que si la procédure d'utilisation n'est pas suivie, il pourrait en résulter des risques de blessures pour celui qui utilise l'appareil.

ATTENTION sensibilise l'utilisateur au fait qu'une utilisation non conforme à celle décrite pourrait endommager l'appareil.

Sécurité - Prescriptions

Pour utiliser votre appareil en toute sécurité, merci de suivre les prescriptions ci-après:

- Utilisation à l'intérieur, à une altitude max. de 2000m.
- Bien comprendre les remarques de sécurité présentes tout au long de ce manuel.

- Avant toute mesure sur des composants, s'assurer que les circuits soient <u>hors tension et que les</u> <u>composants soient déchargés.</u>
- Décharger les condensateurs avant le test.
- L'appareil est conforme à la norme EN61010 (IEC 1010-1) catégorie d'installation II (CAT. II) 50 V, degré de pollution 2.
- N'utiliser l'appareil que selon les modes opératoires décrits dans ce manuel.
- L'alimentation de l'appareil est assurée par une pile 9V. Il est aussi possible d'utiliser un adaptateur secteur 12V. Il est important de s'assurer que l'adaptateur secteur utilisé est conforme aux normes de sécurité CEI.

Symboles de sécurité

DANGER / Se référer au manuel.

Courant DC (continu)

Broche positive au centre (+), négative à l'extérieur (-)

Directive WEEE

Conformément à la directive Europénenne, ce produits ne doit pas être mis avec les déchets ménagers lorsqu'il est en fin de vie, mais doit faire l'objet d'un recyclage.

Nous vous remercions de vous conformer aux textes en vigueur et dans le doute de contacter le distributeur ou le constructeur du produit.

Conditions d'utilisation

0 °C à 40 °C
0-70% HR
-20 °C à +50 °C
2

Sommaire

1
2
4
9
10
15
15
17
18
18
23
25
25
28
29
30
31
32
37

Mode de mesure en parallèle et en série	48
Calibration	49
Touche USB	
Détection automatique de fusible	54
Guide de prise en main rapide	56
Attention	56
Mesure d'inductance	57
Mesure de capacité	59
Mesure de résistance	61
Mesure d'impédance (Modèle 879B seulement)	64
COMMUNICATION A DISTANCE	66
Connexion de l'appareil à l'ordinateur	66
Configuration USB (COM virtuel)	68
Fonction USB	69
Commandes pour le pilotage à distance	71
INFORMATIONS SUPPLEMENTAIRES	84
Choix de la fréquence de test	
Choix du mode en série ou en parallèle	86
Problèmes de précision	
Borne de garde	89
SPECIFICATIONS	90

Spécifications générales	91
Spécifications électriques	
MAINTENANCE	100
Réparation	
Nettoyage	100

INTRODUCTION

Les modèles 878B et 879B développés par B&K Precision sont des ponts RLC portables dotés de 40000 points de mesure, idéal pour effectuer des mesures sur des composants de type inductance, capacité et résistance. Simple à utiliser, l'appareil effectue des mesures en mode en parallèle ou en mode en série et permet le choix de la fréquence de test.

Les touches situées sur le panneau avant permettent un accès direct aux fonctions : hold (maintient),maximum, minimum et moyenne, mode relatif, le mode tolérance permettant le tri de composant, ainsi que le choix des fréquences de mesure.

Les données des tests peuvent être transférées vers un ordinateur via un mini câble USB, utile pour les applications qui nécessitent l'enregistrement et le traitement des données.

Une béquille permet une position stable pour la visualisation et la manipulation de l'appareil. Une gaine de protection en caoutchouc protège l'appareil pour une meilleure longévité et assure une protection de l'écran lorsque l'appareil est posé à l'envers.

Une pile 9V ou un adaptateur secteur DC 12V (inclus avec le modèle 879B) peuvent être utilisés pour

alimenter le pont RLC permettant des utilisations portables ou sur table.

ACCESSOIRES FOURNIS

Tous les ponts RLC 878B et 879B sont livrés avec les accessoires suivants:

- Un pont RLC RLC 878B ou 879B
- Un manuel d'utilisation (papier ou CD-ROM)
- Un mini câble pour l'interface USB
- Un jeu de cordons de test banane/croco
- Une pile 9V
- *un adaptateur secteur (pour le modèle 879B)

*peut être acheté comme un accessoire en option pour le modèle 878B.

Veuillez-vous assurer que tous les accessoires soient bien présents dans l'emballage d'origine. S'il vous manque un accessoire, veuillez contacter rapidement votre distributeur.

FACE AVANT

Schéma 1 – caractéristiques du panneau avant (modèle 879B)

Description du panneau avant

- 1. Écran LCD
- 2. Interrupteur marche/arrêt
- 3. Communication USB / *touche de retro éclairage
- Mode d'affichage secondaire (pour la dissipation facteur(D), qualité facteur (Q),
 *angle de phase (θ), *touche de sélection de la mesure de résistance de série équivalente (ESR)
- Mode d'affichage principal (pour l'inductance, la capacité, la résistance et les mesures d'impédance) / touche de sélection pour la méthode de mesure en série ou en parallèle.
- 6. Mode tolérance / touche de sélection flèche du haut.
- 7. Mode de conservation des données / touche de sélection du mode d'enregistrement.
- 8. Touche du menu "Utilitaires"
- 9. Test de fréquence / touche de sélection flèche du bas
- 10. Mode relatif / touche de sélection du mode de calibration
- Entré de l'adaptateur secteur 12V DC (à utiliser avec un adaptateur secteur externe (nominal12VDC, 150mA, 4mm prise d'alimentation))

Remarque : utiliser seulement avec l'adaptateur secteur inclus. Une utilisation avec un adaptateur inapproprié peut endommager l'appareil.

ATTENTION: avant de connecter un adaptateur externe, veuillez vérifier que la polarité de la pile est bien respectée. Voir « installation de la pile » pour plus de détails. Ne jamais connecter un adaptateur externe la pile n'est pas installée lorsque risque correctement pour de cause l'appareil d'endommagement de ou d'annulation de la garantie.

- 12. Bornes d'entée (fiches bananes) et bornes pour composants : positif, négatif et garde (voir « garde » dans la rubrique « Informations supplémentaires » pour plus de détails)
- Mini port USB standard (pour le contrôle à distance)

*uniquement sur le modèle 879B.

Touches du panneau avant

Toutes les touches du panneau avant ont des étiquettes de couleurs spécifiques. Elles sont toutes colorées en bleu, blanc ou jaune. Chaque couleur à une caractéristique spécifique expliquée ci-dessous.:

- Blanche A l'exception du bouton, toutes les étiquettes colorées en blanc représentent les fonctions principales de la touche; la fonction est réglée ou configurée en appuyant dessus.
 - Bleu certaines touches ont une étiquette bleue sous l'étiquette blanche. Cela signifie que la fonction indiquée par l'étiquette bleue est réglée ou configurée si cette touche est maintenue appuyée pendant 2 secondes.
- Jaune au total, il y a 3 touches avec une

étiquette jaune:

POWER

Ces fonctions sont utilisables seulement lorsque le menu **UTIL** est activé. Voir « menu utility » pour plus de détails.

UTIL

Vue d'ensemble du LCD

Schéma 2 – Indicateurs de l'écran LCD

Description de l'écran LCD

- 1. LCRZ indicateur de la fonction d'affichage principal (* affichage Z)
- 2. MAX indicateur de lecture maximale
- 3. AVG indicateur de lecture moyenne
- 4. MIN indicateur de lecture minimale
- 5. REL indicateur de mode relatif

- Θ *indicateur de l'angle de phase pour l'affichage secondaire
- 7. Q indicateur de facteur qualité
- 8. ESR *indicateur de résistance en série
- 9. .8.8.8.8 affichage secondaire
- 10. •))) indicateur de la tonalité pour le mode tolérance
- 11. deg *indicateur en degré de l'angle de phase
- 12. Ω *indicateur de l'unité de l'ESR (ohm)
- 13. % indicateur du pourcentage de tolérance
- 14. kHz indicateur de l'unité de fréquence
- 15. PAL indicateur du mode en parallèle
- 16. SER indicateur du mode en série
- 17. Henry
- 18. PILL indicateur d'de capacité (Farad)
- 19. $Mk\Omega$ indicateur d'unité de résistance (Ohm)
- 20. RMT indicateur du mode contrôle à distance
- 21. $\cdot \Box \cdot \Box \cdot \Box \cdot \Box \cdot \Box affichage principal$
- 22. D indicateur du facteur de dissipation
- 23. DH indicateur de maintien des données
- 24. AUTO indicateur de gammes automatiques
- 25. TOL indicateur du mode tolérance
- 26. $\overline{+-}$ indicateur de pile faible
- 27. @OFF indicateur d'arrêt automatique

- 28. 1%5%10%20% indicateur du pourcentage du tri (mode tolérance)
- 29. MAX AVG MIN indicateur du mode d'enregistrement

*seulement pour le modèle 879B. Non disponible sur le modèle 878B.

Indicateurs spéciaux

Alimenter l'appareil

Avant de commencer à manipuler l'appareil, une source d'alimentation est nécessaire pour le mettre en marche. Il y a 2 méthodes pour alimenter l'appareil: la pile et l'alimentation externe.

Installation de la pile

Les ponts RLC 878B et 879B peuvent fonctionner avec des piles ce qui permet à l'appareil d'être portable.

Le pont RLC fonctionne avec une pile 9V (IEC6F22 carbone-zinc ou pile alcaline recommandée).

Comment installer la pile:

 Retourner l'appareil. Ouvrir le couvercle arrière et repérer la vis qui maintient le couvercle du compartiment à pile comme indiqué sur le schéma 3. Utiliser un tournevis pour enlever le couvercle.

Schéma 3 – couvercle arrière

 Insérer la pile 9V dans le compartiment. Repérer les bornes positives (+) et négatives (-) comme indiqué au-dessus du compartiment à pile. (voir Schéma 4). Assurez-vous d'insérer la pile dans le bon sens

Schéma 4 – compartiment pile

- Placer le compartiment à pile de manière à le faire glisser dans les fentes du couvercle. Revisser la vis du couvercle à l'aide d'un tournevis.
- Maintenir appuyé le bouton pendant 2 secondes pour mettre en marche l'appareil.

Connexion de l'alimentation externe

Les ponts RLC 878B et 879B peuvent aussi être alimenté avec un adaptateur externe. Le modèle 879B est livré avec un adaptateur inclus dans l'emballage alors que vous le trouverez en option pour le modèle 878B.

Pour une alimentation externe, utilisez un adaptateur 12V DC, 150mA, avec un connecteur jack 4 mm.

ATTENTION: l'utilisation d'un adaptateur inapproprié peut endommager l'appareil. Veuillez utiliser exclusivement l'adaptateur de la marque B&K Precision.

Comment connecter l'adaptateur:

 Si une pile est installée, veuillez vérifier encore une fois que la polarité de la pile corresponde à la polarité de l'étiquette situé dans le compartiment à pile.si ce n'est pas le cas, veuillez enlever et remettre la pile dans le bon sens. Si aucune pile n'est installée, référez-vous directement à la prochaine étape.

ATTENTION: NE JAMAIS connecter un adaptateur externe lorsqu'une pile n'est pas installée correctement (en particulier si sa polarité est inversée) Vous risquez d'endommager l'appareil et d'annuler la garantie.

- 2. Connectez l'adaptateur sur le côté droit de l'appareil. Voir le schéma 5 ci-dessous.
- 3. Branchez la prise de l'adaptateur dans une prise électrique.
- Maintenez appuyé le bouton pendant 2 secondes pour mettre en marche l'appareil.

Schéma 5 – Connexion d'un adaptateur à un mesureur

Remarque : l'appareil peut fonctionner avec une pile installée même si l'adaptateur est branché (tant que la pile est insérée correctement en respectant la polarité). Dans ce cas, l'appareil va automatiquement utiliser l'énergie de l'adaptateur à la place de celle de la pile afin de préserver la durée de vie de celle-ci.

Indicateur de pile faible

Le pont RLC possède un indicateur de pile faible afin que l'utilisateur sache quand changer la pile. Lorsque sur l'écran l'indicateur + commence à clignoter, le niveau de charge de la pile est en dessous du niveau normal de fonctionnement. Dans ce cas, la précision du pont RLC diminue. Il est recommandé de changer la pile le plus rapidement possible avant de continuer les manipulations. Voir « installation de la pile » pour connaitre les consignes.

Rétro éclairage de l'écran (sur le modèle

879B)

Le pont RLC 879B est doté d'un écran rétro éclairé qui vous permet de visualiser l'écran LCD dans un environnement sombre.

Pour mettre en marche le retro éclairage, maintenez

appuyé la touche pendant 2 secondes .le rétro éclairage se met en marche et éclaire l'écran LCD.

Pour éteindre le rétro éclairage, maintenez appuyé la touche pendant 2 secondes.le rétro éclairage

s'éteint et retourne à un affichage normal.

Lorsque l'appareil fonctionne avec la pile

Lorsque le pont RLC fonctionne avec la pile 9V, le retro éclairage de l'écran s'allume en appuyant pendant 2 secondes sur . Au maximum, l'écran reste éclairé pendant 15 secondes. Puis, 15 secondes plus tard, (au total 30 secondes depuis le moment de l'allumage), le rétro éclairage s'éteint automatiquement pour préserver la durée de vie de la pile.

Lorsque l'appareil fonctionne avec une alimentation externe

Lorsque le pont RLC fonctionne avec un adaptateur externe, le retro éclairage de l'écran s'allume en appuyant pendant 2 secondes sur la touche L'écran reste éclairé en continu jusqu'à ce que l'utilisateur ré-appuie pendant 2 secondes sur la même

touche

Remarque : si une pile est installée lorsque le pont RLC et qu'un adaptateur externe est connecté, en débranchant l'adaptateur, le retro éclairage s'éteint automatiquement au bout de 30 secondes.

MISE EN OEUVRE

Fonction HOLD - Maintien des données

La fonction HOLD permet à l'utilisateur de figer l'affichage de l'écran lorsque la touche est pressée, les valeurs mesurées restent jusqu'à ce que la fonction HOLD soit désactivée.

Activation de la fonction HOLD

Pour utiliser la fonction HOLD, appuyez une fois sur HOLD sur C. L'indicateur "DH" s'affiche à l'écran lorsque la fonction est active.

Désactivation de la fonction HOLD

Pour désactiver la fonction HOLD, appuyez encore sur HOLD . L'indicateur « DH » disparait de l'écran et le pont RLC reste en mode de fonctionnement normal

Remarque: en changeant la fonction principale, la secondaire ou la fréquence des tests, fonction HOLD se désactive automatiquement.

Enregistrement statique

Ce mode est utilisé pour enregistrer des valeurs maximales, minimales et moyennes. Ce mode est souvent utile pour tester un composant dans une gamme de valeurs.

Activation d'enregistrement statique

Maintenez appuyé la touche pendant 2 secondes pour entrer dans le mode d'enregistrement statique. L'écran doit indiquer : "**MAX AVG MIN**" simultanément. Cela indique que le pont RLC est en mode d'enregistrement statique et l'enregistrement s'effectue immédiatement.

Utilisation de l'enregistrement statique

4 modes différents peuvent être sélectionnés pour l'enregistrement statique. Ils sont décrits plus loin. Ces modes peuvent être changés à chaque fois que vous appuyez sur HOLD. A chaque pression sur la touche HOLD, les modes changent dans l'ordre suivant :

Mode d'enregistrement \rightarrow mode maximum \rightarrow mode minimum \rightarrow mode moyenne

Mode d'enregistrement

Il s'agit du mode par défaut lorsque vous activez pour la première fois l'enregistrement statique. Dans ce mode,

l'écran affiche l'indicateur "MAX AVG MIN". A ce moment, le pont RLC commence à effectuer des enregistrements basés sur les valeurs mesurées à partir des prises d'entrée ou des bornes. Etant donné qu'un enregistrement est effectué, les valeurs maximales, minimales et moyennes sont stockées après un court instant. Une tonalité se déclenche une fois que l'enregistrement a été stocké.

Remarque : plusieurs bips peuvent se déclencher dans ce mode s'il y a de nouvelles valeurs enregistrées par exemple si une nouvelle valeur maximale est détectée, le bip se déclenche une nouvelle fois pour indiquer que la nouvelle valeur a été stockée. Toutes les valeurs stockées précédemment sont réécrites avec les nouvelles valeurs enregistrées.

Mode maximum

Dans ce mode, l'indicateur "**MAX**" s'affiche sur l'écran. Il indique que la valeur de l'affichage principal représente la valeur maximale enregistrée.

Mode minimum

Dans ce mode, l'indicateur "**MIN**" s'affiche sur l'écran. Il indique que la valeur de l'affichage principal représente la valeur minimale enregistrée.

Mode moyenne

Dans ce mode, l'indicateur **"AVG**" est affiché sur l'écran. Il indique que la valeur de l'affichage principal représente la valeur moyenne enregistrée. Cette valeur moyenne est obtenue en prenant les valeurs maximales et minimales enregistrées et en faisant la <u>moyenne de ces deux valeurs</u>.

Désactivation de l'enregistrement statique

Pour quitter ce mode, maintenez appuyé la touche pendant 2 secondes. Les indicateurs "MAX AVG MIN", "MAX", "MIN", ou "AVG" disparaissent de l'écran.

HOLD

Remarque : en changeant la fonction principale, la secondaire ou les fréquences de test, l'enregistrement statique s'arrête automatiquement.

Sélection du mode L/C/R/Z

L'affichage principal du pont RLC est utilisé pour indiquer les valeurs mesurées sous 4 modes différents (3 *modes pour 878B, ce qui exclut le mode de mesure Z (impédance)*). Ces modes sont les suivants:

L (inductance), C (capacité), R (résistance), et Z (impédance).

Pour passer d'un mode à l'autre parmi ces 4 modes de mesure, appuyez sur $(OU \ SUP \ P \rightarrow S)$ (ou sur $(P \rightarrow S)$ pour le

modèle 878B). Ces modes changent et se répètent à chaque pression sur cette touche. Sur l'écran, les indicateurs "L", "C", "**R**", or "**Z**" (879B uniquement) sont affichés pour indiquer dans quel mode se trouve le pont RLC.

Sélection D/Q/0/ESR

L'affichage secondaire du pont RLC est utilisé pour indiquer les valeurs mesurées pour les 4 paramètres différents (2 pour le modèle 878B, ce qui exclut la mesure de θ et d'ESR). Il fournit des informations supplémentaires du composant testé et il est complémentaire au mode de mesure principal. Ces modes sont les suivants : D (facteur de dissipation), Q (facteur de qualité), θ (angle de phase), et ESR (résistance série équivalente).

Pour passer d'un paramètre de mesure à l'autre, appuyez sur (ou) (ou

Fréquence de test

Les ponts RLC 879B et 878B utilisent un signal AC pour tester et mesurer les composants. Avec cette méthode de mesure, une fréquence de test doit être sélectionnée. La fréquence de test peut modifier la précision des résultats qui dépendent du choix de cette fréquence, du type et de la valeur du composant qui est testé ou mesuré. Pour les détails sur le choix des fréquences de test optimales pour les mesures, veuillez-vous référer au paragraphe « Informations supplémentaires »

Sélection de fréquence de mesure

Pour sélectionner ou changer la fréquence de test, appuyez une fois sur TREQ. A chaque fois que vous appuyez sur cette touche, la fréquence de test est indiquée sur l'affichage secondaire du pont RLC. Elle reste affichée jusqu'à ce qu'une fonction différente de l'affichage secondaire soit sélectionnée.

La sélection des fréquences de test pour le pont RLC **879B** est : **100 Hz, 120 Hz, 1 kHz, et 10 kHz.**

La sélection des fréquences de test pour le pont RLC **878B** est : **120 Hz et 1 kHz.**

Mode relatif

Le mode relatif est utilisé lorsque l'utilisateur veut compenser un offset ou lorsqu'il veut obtenir une lecture qui est relative à une valeur de référence.

Par exemple, si les fils de test sont utilisées pour la mesure, l'utilisateur pourrait vouloir compenser les fils de test, ainsi toutes les mesures effectuées ne prendront pas en compte les fils de test.

Réglage du mode relatif

Pour régler le mode relatif, appuyez simplement sur

La valeur affichée à l'écran est immédiatement stockée en tant que valeur de référence. Cette valeur de référence est utilisée pour toutes les mesures lorsque le pont RLC est en mode relatif, qui est indiqué par l'indicateur "**REL**" sur l'écran.

Une utilisation normale du mode relatif indique zéro à la sortie du pont. Si rien n'est connecté dans les prises

d'entrée et dans les bornes, appuyez une fois sur et le pont RLC est sur « zéro » ce qui indique que toutes les lectures de l'affichage deviennent 0.

Pour faire des mesures avec des réglages de test spécifiques ou avec des fils de test, il est recommandé à l'utilisateur d'avoir d'abord des fils de test ou des câblages connectés au pont RLC. Ensuite, appuyez sur

pour prendre en compte l'offset et l'annuler.

Désactivation du mode relatif

Pour désactiver le mode relatif, appuyez encore une fois sur REL. L'indicateur "**REL**" disparait, ce qui indique que le mode relatif est désactivé.

Remarque : en changeant la fonction principale, la secondaire ou les fréquences de test, le mode relatif se désactive automatiquement.

Mode Tolérance

Le mode tolérance est spécifiquement utilisé pour le tri des composants. Les utilisateurs qui ont besoin de tester et de trier parmi une grande quantité de composants trouveront cette fonction très utile.

Gamme de tolérance

La fonction tolérance est configurée en pourcentage, c'est-à-dire qu'un pourcentage est utilisé pour définir si une valeur mesurée est dans ou en dehors de la tolérance.

(*Pour le modèle 879B*) le choix de la tolérance est : 1%, 5%, 10%, et 20%.

(Pour le modèle 878B) le choix de la tolérance est : 1%,

5%, et 10%.

Réglage de la tolérance

1. Sélectionnez le mode de mesure principal base sur le type de composant à être mesuré.

Cela s'effectue en appuyant sur $(ou^{UCRZ})_{P \leftrightarrow S}$ pour le modèle 878B) pour configurer le mode de mesure voulu.

Remarque: Assurez-vous de choisir le bon mode de mesure, étant donné que le mode tolérance ne peut pas être activé sauf si le bon mode est choisi. Par exemple, si le composant est un condensateur, assurez-vous de sélectionner « C » pour condensateur. Si ce n'est pas le cas, le mode tolérance ne sera pas activé lorsque vous effectuerez la procédure suivante.

 Insérez le composant qui sera utilisé comme valeur de référence « standard ». En d'autres termes, insérez un composant que vous savez « bon » qui sera utilisé pour les tests contre tous les autres composants.

(Voir schéma 6)

Remarque : le mode tolérance ne peut pas être activé sauf si le pont RLC détecte un composant connecté aux bornes d'entrée.

ATTENTION: si le composant à mesurer est un <u>condensateur</u>, assurez-vous que le condensateur soit complètement déchargé <u>avant</u> de l'insérer dans une prise d'entrée ou dans une borne. Pour les gros condensateurs, le temps de décharge est plus long. En insérant un condensateur chargé ou partiellement chargé dans la prise d'entrée ou dans les bornes du pont RLC, il peut se produire un choc électrique et l'appareil peut être endommagé, voire inutilisable.

Schéma 6 - Insertion des composants dans l'entrée

3. Une fois la lecture de la mesure affichée,

appuyez sur pour stocker la lecture en tant que valeur standard ou valeur de référence de test. A ce moment, l'indicateur « **TOL** » est affiché à l'écran, ce qui indique que le mode de tolérance est activé.

Remarque: toutes les valeurs qui apparaissent sur l'écran LCD, comme par exemple DH (maintien des données) ou MAX/MIN/AVG, peuvent également être utilisées comme une valeur "standard" ou une valeur de référence de test pour le tri des composants.

- Pour choisir la gamme de tolérance, appuyez sur . A chaque pression sur la touche, le pont RLC varie selon le pourcentage de tolérance de la gamme dans cet ordre: 1%, 5%, 10%, 20% (seulement pour le modèle 879B). Ces gammes de pourcentage sont aussi affichées sur l'écran avec les indicateurs "1%", "5%", "10%", ou "20%" (seulement pour le 879B) respectivement. Le composant qui sera testé sera vérifié avec la tolérance sélectionnée (comme ce qui a été configuré à l'étape 3)
- 5. Après quelques secondes, une tonalité se déclenche.

UN seul "bip" ou tonalité signifie que le composant est <u>dans la tolérance</u>.

Trois "bips" ou tonalités signifient que le composant est <u>en dehors de la tolérance</u>.

Désactivation du mode de tolérance

Pour désactiver ou quitter le mode de tolérance,

maintenez appuyé la touche pendant 2 secondes. L'indicateur « TOL » ou les indicateurs de pourcentage"1%", "5%", "10%", or "20%" (seulement pour le modèle 879B) disparaissent de l'écran.

Remarque : en changeant la fonction principale, la secondaire ou les fréquences de test, le mode relative se désactive automatiquement.

Menu « utilitaire »

Le pont RLC est doté d'un menu utilitaire qui vous permet de configurer les préférences de l'utilisateur et les réglages. Les touches utilisées pour régler et contrôler

le menu sont de couleur jaune : [FREQ, [TOL], et UTL]. L'utilisateur peut configurer la tonalité du bip, le minuteur d'arrêt automatique, l'état de mise sous tension, et la remise à zéro de l'appareil pour les réglages par défaut.

Utilisation du menu « utilitaire »

Maintenez appuyé la touche pendant 2 secondes ou jusqu'à ce que l'affichage principal affiche "**bEEP**". Cela indique que le pont RLC fonctionne dans le menu utilitaire.

Configurations et réglages

Il y a 4 options de menu différentes et des réglages configurables sous chaque option. Le tableau ci-dessous fait la liste de ces options et des réglages.

OPTIONS DU MENU	REGLAGES / PARAMETRES
bEEP	ON / OFF
AoFF	5 / 15 / 30 / 60 / OFF
PuP	PrE / Set
dEF	yES / NO

Tableau 1 – options et réglages du menu utilitaire

Les 4 options du menu permettent à l'utilisateur de définir la tonalité du bip (bEEP), paramétrer l'arrêt automatique (AoFF), l'état de mise sous tension (PuP), et la remise à zéro de l'appareil avec les réglages par défaut (dEF).

Par défaut, la première option que vous trouvez dans le menu utilitaire est l'option "bEEP". L'affichage principal indique l'option du menu, et l'affichage secondaire indique les réglages et paramètres actuels configurés pour l'option sélectionnée. Pour modifier les réglages ou les paramètres, appuyez sur les touches directionnelles et Pour changer ou choisir une option de menu différente, appuyez sur vous appuyez sur le pont RLC traverse chaque option du menu et se répète selon cet ordre:

bEEP→ AoFF → PuP →dEF

Remarque: les réglages et les paramètres sont temporairement "sauvegardés" lorsque vous appuyez sur pour choisir une option de menu différente. Pour sauvegarder tous les réglages de façon permanentes, sortez du menu en utilisant les méthodes de sauvegarde et de sortie. A l'exception des réglages "**bEEP**" et "**AoFF**", les modifications sont temporairement sauvegardées même si vous quittez le menu sans effectuer une sauvegarde (Voir "quitter le mode utilitaire" pour plus de détails).

Réglage de la tonalité du bip (bEEP)

L'option du menu "**bEEP**" permet à l'utilisateur d'activer ou de désactiver la tonalité du bip que vous entendez à chaque fois que vous appuyez sur une touche.

Remarque: cette option désactive seulement le bip pour chaque pression sur une touche. Elle ne désactive pas le bip pour les modes « enregistrement statique » et *"tolérance", tout comme l'avertissement de l' « arrêt automatique ».*

Pour activer le bip, appuyez soit sur receiver soit sur jusqu'à ce que l'affichage secondaire affiche "ON".

Pour désactiver le bip, appuyez soit sur soit sur jusqu'à ce que l'affichage secondaire affiche "**OFF**".

Réglage par défaut: ON

Réglage de l'arrêt automatique (AoFF)

L'option "AoFF" du menu permet à l'utilisateur de régler le minuteur d'arrêt automatique. Ce minuteur est en activité permanente. Il est remis à zéro à chaque fois que vous appuyez sur une touche ou lorsqu'une action se produit. Si le pont RLC est laissé tel quel ou sans surveillance, le minuteur fonctionne jusqu'à ce que le temps écoulé soit passé. Ce point est particulièrement important si l'utilisateur veut préserver la durée de vie de la pile ou laisser le pont RLC en fonction continue sans aucune interruption.

Remarque: lorsque le minuteur a atteint le temps configuré, le pont RLC émet un bip continuel pendant 10

secondes avant de s'éteindre automatiquement. Pour arrêter le bip, appuyez sur n'importe quelle touche pour reprendre le fonctionnement normal et remettre à zéro le minuteur.

Les réglages du minuteur disponibles sont: 5 minutes, 15 minutes, 30 minutes, 60 minutes, et off.

Lorsque l'affichage principal affiche "AoFF", appuyez sur et pour choisir le réglage du minuteur. Les réglages sont affichés dans l'affichage secondaire comme représentés ci-dessous :

Affichage secondaire	REPRESENTATION
5	5 minutes
15	15 minutes
30	30 minutes
60	60 minutes
OFF	Pas de minuteur. Arret
	manuel seulement

Tableau 2 – options d'arrêt automatique

Réglage par défaut: 15 minutes

Lorsque l'option d'arrêt automatique est réglée sur une des configurations du tableau (sauf pour "OFF"), l'indicateur "@**OFF**" s'affiche à l'écran et reste jusqu'à

ce que vous quittiez le menu utilité. Cela indique que vous avez réglé le minuteur d'arrêt automatique.

Remarque: lorsqu'un adaptateur externe 12VDC AC est utilisé pour alimenter l'appareil, l'option d'arrêt automatique <u>est désactivée</u> automatiquement. Ceci est indiqué sur l'écran lorsque l'indicateur "**@OFF** "disparait. Dans ce cas, l'appareil reste <u>allumé</u> continuellement. L'appareil s'éteint alors manuellement

en maintenant pendant 2 secondes le bouton

Lorsque l'alimentation externe est enlevée, le pont RLC réactive automatiquement l'arrêt automatique et l'indicateur "@OFF" réapparait si une durée a été réglé dans l'option "AoFF" du menu utilitaire.

État de mise sous tension (PuP)

L'option du menu "**PuP**" permet à l'utilisateur de configurer l'état de mise sous tension du pont RLC RLC, grâce à cette option l'utilisateur peut restaurer les réglages sauvegardés dabs la mémoire interne EEPROM lors de la mise sous tension.

Dans le menu utilitaire, lorsque l'affichage principal affiche "**PuP**", vous avez le choix entre 2 réglages affichés dans l'affichage secondaire. "**PrE**" et "**SEt**".

Réglage par défaut: PrE

Réglages stockables en mémoire

- Mode fonction principale (i.e. L/C/R)
- Fréquence de test
- Mode de fonction secondaire (i.e. D/Q)
- Mode tolérance
- Valeur de référence pour le mode de tolérance
- Mode relatif
- Valeur de référence pour le mode relatif

Etat à la mise sous tension

Veuillez suivre la procédure suivante pour régler et stocker l'état de mise sous tension dans la mémoire interne.

 Avant d'entrer dans le menu utilitaire, veuillez configurer tous les réglages et paramètres voulus pour l'état de mise sous tension. Pour cela, mettez en marche tous les modes et réglez les valeurs désirées. (seuls les réglages listés ci-dessus sont sauvegardés). Si le pont RLC fonctionne en mode utilitaire, quittez d'abord le menu et réglez les paramètres désirés pour pouvoir les rappeler à la mise sous tension. (voir "quitter le menu utilitaire " pour plus de détails) 2. Une fois que les réglages sont configurés, entrez dans le menu utilitaire en maintenant

```
appuyé ta touche unit pendant 2 secondes.
```

- Faites défiler le menu jusqu'à ce que vous voyiez "PuP" sur l'affichage principal. L'affichage secondaire affiche on "PrE".
- Dans le but de sauvegarder les réglages actuels pour la mise sous tension du pont RLC dans la mémoire interne, appuyez soit

sur ou sur pour changer les réglages, ainsi l'affichage secondaire affiche **"SEt**".

5. Appuyez sur pour sélectionner l'option du menu suivante. Une fois que toutes les options d'utilitaire sont configurées, quittez le menu utilitaire en maintenant appuyé

UTIL

pendant 2 secondes.

 A présent, le pont RLC a sauvegardé tous les réglages actuels dans la mémoire interne. A la prochaine mise sous tension de l'appareil, il rappellera les réglages sauvegardés.

Remarque: le pont RLC permet la sauvegarde d'un ensemble de paramétré dans la mémoire interne. Vous devez donc utiliser la même procédure pour réécrire sur les réglages sauvegardés auparavant dans la mémoire.

Prévenir la réécriture des réglages sauvegardés.

Dans le menu utilitaire, le réglage par défaut de l'option "**PuP**" est toujours "**PrE**". Cela signifie « réglage précédent ». En gardant ce réglage, vous éviterez ainsi une réécriture des réglages de mise sous tension qui sont sauvegardés dans la mémoire. Donc, lorsque vous entrez dans le menu utilitaire, assurez-vous de ne pas changer « **PrE** » en « **Set** » afin d'éviter une réécriture des réglages.

Remise à zéro des réglages par défaut (dEF)

La dernière option du menu utilitaire vous permet de remettre à zéro le pont RLC pour retrouver les réglages par défaut. Lorsque l'affichage principal affiche "**dEF**", le secondaire affiche par défaut "**NO**". Le pont RLC paramètre par défaut ce régle sur "**NO**" afin d'éviter une remise à zéro accidentelle des réglages de l'appareil.

Réglage par défaut: No

Pour remettre à zero les réglages par défaut, sélectionnez d'abord l'option du menu "**dEF**" en utilisant la touche une pour parcourir le menu utilitaire. Lorsque l'affichage principal affiche "**dEF**", appuyez soit sur **FREQ** ou **TOL** pour changer les réglages pour que l'affichage secondaire affiche "**yES**". Jusqu'au moment de l'enregistrement et de la sortie du menu utilitaire, l'appareil est automatiquement réinitialisé à ses paramètres d'origine. Ci-dessous se trouve le tableau de tous les réglages qui peuvent être restaurés.

Réglages	Configuration par défaut
Fonction principale	C (Capacité)
Fonction secondaire	aucune
Méthode de mesure	SER (Séries)
Fréquence de test	1 kHz
Buzzer	On
Arrêt automatique	15 (15 minutes)
État de mise sous tension	PrE
Remise à zéro des	Non
réglages par défaut	

Tableau 3 - réglage par défaut de l'appareil

Remarque : dans le cas où l'option "**PuP**" est activée, "**SEt**" est sélectionné et "**dEF**" est réglé sur "**yES**", le réglage "**PuP**" est prioritaire sur le réglage "**dEF**". Cela signifie que l'appareil ne sera pas réglé sur la position réglage par défaut au moment de l'enregistrement et de la sortie du menu d'utilitaire. A la place, les réglages de la mise sous tension sont sauvegardés jusqu'à la prochaine mise en marche de l'appareil.

Sortie du menu utilitaire

Il y a 2 méthodes pour quitter le menu utilitaire. L'une sauvegarde tous les paramètres qui ont été modifiés avant de quitter le menu et l'autre quitte le menu sans sauvegarder.

Sauvegarde et sortie

Pour sauvegarder toutes les options de réglages et pour quitter le menu, maintenez appuyé pendant 2 secondes la touche The Après cela, le pont RLC quitte le menu et tous les réglages sont sauvegardés.

Quitter sans sauvegarder

Si l'utilisateur décide de quitter le menu utilitaire sans faire aucun changement ni aucune sauvegarde avec l'option "**PuP**" ou "**dEF**", il peut le faire en appuyant simplement sur n'importe quelle touche du panneau

avant sauf oter que les paramètres changés sous l'option "**bEEP**"

et "**AoFF**" restent réglés temporairement jusqu'à la prochaine mise en marche de l'appareil.

Mode de mesure en parallèle et en série

Le pont RLC offre la possibilité de choisir entre le mode de mesure en parallèle et en série. Selon le mode que vous avez choisis, la méthode pour mesurer les composants sera différente. De plus, un des modes de mesure peut apporter des meilleures précisions par rapport aux autres modes de mesure en fonction du type de composant et de la valeur du composant testé. Pour plus de détails, veuillez-vous référer au chapitre « Informations supplémentaires »

Réglages par défaut

Pour les mesures de **capacité** et de **résistance**, le mode de mesure par défaut est en mode **parallèle**.

Pour les mesures d'**inductance**, le mode par défaut est le mode en <u>série</u>.

Sélection du mode de mesure

Les modes de mesure du pont RLC sont indiqués par les indicateurs "SER" or "PAR" sur l'écran. "SER" signifie que le pont RLC est en mode de mesure en série. "PAR" signifie qu'il est en mode de mesure en parallèle. Pour passer d'un mode à l'autre, maintenez appuyé (ou pour le modèle 878B). Les indicateurs sur l'écran doivent basculer entre "**SER**" et "**PAR**".

Calibration

La calibration est disponible dans tous les modes. Il est recommandé d'obtenir les lectures optimales, ainsi la calibration doit être faite avant de faire d'autres mesures.

Pour entrer dans le mode de calibration, maintenez appuyé la touche CAL pendant 2 secondes. Une calibration rapide est alors affichée. Il y a 2 sortes de calibration disponibles. L'une est une calibration en circuit ouvert, l'autre est une calibration en court-circuit. Pour quitter le mode de calibration, maintenez appuyé la touche CAL pendant 2 secondes.

Calibration circuit ouvert

La calibration circuit ouvert peut être effectuée seulement lorsque le pont RLC entre en premier dans le mode de calibration. Si la prise d'entrée ou la borne ne sont pas connectées, l'écran doit afficher ce qu'on voit sur le schéma 7. L'indicateur "**REL**" clignote alors sur l'écran. C'est un avertisseur qui prévient que le pont RLC est en attente d'une action. A ce moment, la calibration circuit ouvert peut être effectuée en appuyant une fois sur la touche REL cal. En quelques secondes, le pont RLC repasse en affichage normal et il est calibré selon la fréquence de test et les réglages paramétrés avant d'entrer dans le mode de calibration.

Calibration en court-circuit

Une calibration en court-circuit peut être effectuée lorsque le pont RLC entre en premier dans le mode de calibration. Si la prise d'entrée ou la borne ne sont pas connectées, l'écran doit afficher ce qu'on voit sur le schéma 7. Pour effectuer une calibration en court-circuit, mettez simplement une barre de court-circuit ou une petite pièce de métal conducteur (ex: un trombone) sur les bornes "+" et "-". En quelques secondes, le pont RLC affiche le même écran que celui du schéma 8, qui prévient le court-circuit. L'indicateur "**REL**" clignote alors sur l'écran. C'est un avertisseur qui prévient que le pont RLC est en attente d'une action. A ce moment, la calibration en court-circuit peut être effectuée en appuyant une fois sur la touche REL Après quelques secondes le pont RLC repasse en affichage normal et il est calibré selon la fréquence de test et les réglages paramétrés avant d'entrer dans le mode de calibration.

Figure 8 – calibration en court-circuit

Procédure rapide

Voici les étapes à suivre pour effectuer à la fois une calibration ouverte et en court-circuit.

- 1. Sélectionnez le mode de fonction principale pour les mesures. (i.e. L/C/R/Z).
- 2. Sélectionnez la fréquence de test pour les mesures.
- 3. Sélectionnez le mode de mesure (i.e. en série ou en parallèle)
- 4. Une fois que tous les réglages sont configurés, maintenez appuyé pendant 2

secondes la touche pour entrer dans le mode de calibration.

- 5. En premier, effectuez une calibration circuit ouvert en suivant les consignes du chapitre « calibration circuit ouvert ».
- Ensuite, effectuez une calibration en courtcircuit en suivant les consignes du chapitre « calibration en court-circuit ».
- 7. A présent, le pont RLC doit repasser en affichage normal et l'utilisateur peut effectuer les mesures sur les composants avec la maximum de précision.

Recommandations

Pour obtenir des résultats de mesures optimales, les deux

calibration (circuit ouvert et court-circuit) doivent être effectuées. Il est fortement recommandé de calibrer des valeurs extrêmement élevées ou très basses pour le mode L, C, R et Z avant d'entreprendre des mesures de précision.

Remarque:

- Si la fréquence de test est modifiée, la calibration doit être effectuée une nouvelle fois avant de faire des mesures précises. Une fois que la calibration est effectuée dans une fréquence de test choisie, les données de calibration reste jusqu'à l'arrêt de l'appareil.
- Si la calibration circuit ouvert ou en courtcircuit n'est pas associée avec la fonction de mesure, alors les modifications de fonction ne nécessitent pas une nouvelle calibration.
- Une nouvelle calibration peut être nécessaire en fonction de nombreux facteurs comme par exemple une utilisation prolongée, un changement d'environnement et des changements des types de cordons de mesure

Touche USB

La touche USB (ou usb pour le modèle 878B) est utilisée pour la communication à distance. Voir le chapitre « communication à distance »

Détection automatique de fusible

Le pont RLC possède un fusible interne qui protège les entrées. Lorsque le pont RLC détecte que le fusible de protection est coupé, l'indicateur "**FUSE**" apparait sur l'affichage principal (voir schéma 9) et un bip interne se déclenche en continu. Dans ce cas, aucune des touches ne fonctionne et toutes les autres fonctions de l'appareil sont désactivées.

Si l'écran affiche l'indication ci-dessus, vous devez remplacer le fusible. Arrêtez l'appareil en maintenant

POWER

appuyé la touche ^(b) pendant 2 secondes. Si le pont RLC ne s'éteint pas, enlevez adaptateur externe s'il est en fonction et/ou enlevez la pile de son compartiment. Veuillez ne pas effectuer de nouvelles opérations jusqu'à ce que le fusible soit remplacé. Il ne doit être remplacé que par un type strictement identique

Guide de prise en main rapide

Attention

- Ne pas mesurer un condensateur qui ne soit pas complètement déchargé. Connecter un condensateur chargé ou partiellement chargé à l'entrée de la borne pourrait endommager l'appareil.
- Lorsque vous effectuez des mesures sur un circuit, le circuit doit être mis hors tension avant de connecter les fils de test.
- En cas d'utilisation dans un environnement poussiéreux, l'appareil doit être nettoyé régulièrement.
- Ne pas laisser l'appareil exposé trop longtemps et directement aux rayons du soleil.
- Avant de retirer le couvercle, assurez-vous que l'appareil ne soit branché à aucun circuit et qu'il soit bien éteint.

Remarque:

Pour obtenir des précisions optimales pour les mesures L, C, et R avec des gammes maximales ou minimales, calibrez le pont RLC avant d'effectuer les tests. Voir le chapitre "calibration" pour plus de détails.

Mesure d'inductance

- 1. Appuyez sur bendant une seconde pour mettre en marche le pont RLC.
- 2. Appuyez sur $(P \rightarrow S)$ (ou $P \rightarrow S$) jusqu'à ce que l'indicateur "L" soit affiché à l'écran pour sélectionner les mesures d'inductance.
- 3. Insérez une inductance soit dans les griffes d'entrée, soit connectez les cordons de mesure à l'inductance selon le schéma 10.

FREQ

- 4. Appuyez sur jusqu'à ce que le fréquence de test désirée soit affichée à l'écran.
- 5. Appuyez sur (DQH) (OU (DQ)) (OU (DQ)) pour le modèle $878B) pour choisir entre le facteur D, Q, l'angle <math>\theta$ ou les mesures ESR sur l'affichage secondaire. (*la fonction* θ *et ESR seulement disponible sur le modèle* 879B)
- 6. Lisez les indications à l'écran pour connaitre les valeurs d'inductance mesurées et pour les valeurs sélectionnées sur l'affichage secondaire.

Schéma 10 – Mesures d'inductance

Mesure de capacité

ATTENTION déchargez complètement le condensateur <u>AVANT</u> de l'insérer dans l'appareil. Dans le cas contraire, le pont RLC pourrait être endommagé et un choc électrique pourrait se produire.

- 1. Appuyez sur $\underbrace{\begin{smallmatrix} \text{POWER} \\ 0 \end{smallmatrix}}$ pendant une seconde pour mettre en marche le pont RLC.
- Appuyez sur (UC/RZ) (ou (UC/R) pour le modèle 878B) jusqu'à ce que l'indicateur "C" soit affiché à l'écran pour sélectionner les mesures de capacité.
- 3. ATTENTION: AVANT d'insérer un condensateur ou un composant capacitif dans la borne d'entrée, assurez-vous que le composant soit totalement déchargé. Certains composants très gros prennent plus de temps à se décharger. Dans ces conditions, veuillez prévoir assez de temps pour une décharge complète.si la décharge du composant n'est pas effectuée correctement, cela risque d'endommager les bornes d'entrée du pont RLC
- 4. Insérez le condensateur ou le composant capacitif DECHARGE soit dans les griffes d'entrée, soit

connectez les cordons de mesure à la capacité selon le schéma 11.

- 5. Appuyez sur jusqu'à ce que la fréquence de test désirée s'affiche à l'écran.
- 6. Appuyez sur (ou) (ou)
- 7. Lisez les indications à l'écran pour connaitre les valeurs de capacité mesurées et pour les valeurs sélectionnées sur l'affichage secondaire.

Schéma 11 - Mesures de capacité

Mesure de résistance

- 1. Appuyez sur pendant une seconde pour mettre en marche le pont RLC.
- Appuyez sur (UC/RZ) (ou (UC/R) pour le modèle 878B) jusqu'à ce que l'indicateur "R" soit affiché à l'écran pour sélectionner les mesures de résistance.

3. Insérez une résistance ou un composant résistif soit dans les griffes d'entrée, soit connectez les cordons de mesure à la capacité selon le schéma 12.

4. Appuyez sur jusqu'à ce que la fréquence de test désirée s'affiche à l'écran.

Remarque: ce pont RLC ne fait pas une mesure avec une tension continue. il utilise un signal alternatif pour la mesure. C'est pour cette raison que certaines applications ou certains dispositifs testés ne fournissent pas des lectures correctes s'ils ont été conçus pour des mesures en tension continue..

5. Lisez les indications de l'écran pour connaitre les valeurs mesurées de la résistance.

Schéma 12 – Mesures de résistance

Mesure d'impédance (Modèle 879B seulement)

- 1. Appuyez sur bendant une seconde pour mettre en marche le pont RLC.
- 2. Appuyez sur $(uc)^{RZ} p \rightarrow s$ (ou $p \rightarrow s$ pour le modèle 878B) jusqu'à ce que l'indicateur "Z" soit affiché à l'écran pour sélectionner les mesures d'impédance.
- 3. Insérez un composant soit dans les griffes d'entrée, soit connectez les cordons de mesure à la capacité selon le schéma 13.
- 4. Appuyez sur jusqu'à ce que la fréquence de test désirée s'affiche à l'écran.
- 5. Lisez les indications de l'écran pour connaitre les valeurs mesurées d'impédance.

Schéma 13 – réglage pour les mesures d'impédance

COMMUNICATION A DISTANCE

Le pont RLC à la capacité de communiquer avec un ordinateur via la mini interface USB. Une fois l'installation du pilote USB effectuée, l'ordinateur peut contrôler l'appareil grâce au COM virtuel (RS-232). La mini interface de communication USB du pont RLC est conçu en bidirectionnel simultané et possède des tampons d'entrée et sortie de 64 bits, la rendant fiable et efficace pour la transmission de données.

Connexion de l'appareil à l'ordinateur

Veuillez suivre la procédure suivante pour les réglages de la connexion.

- 1. Téléchargez le pilote USB sur le site www.bkprecision.com
- avec le mini câble USB inclus, connectez l'extrémité du câble au pont RLC et l'autre extrémité à un port USB libre de l'ordinateur (voir schéma 14).
- Lorsque Windows reconnait la connexion USB, ne suivez pas l'assistant d'installation du pilote de Windows par défaut. Indiquer simplement l'emplacement du pilote USB téléchargé et suivez les instructions pour installer le pilote.

4. Lorsque l'installation est terminée, l'ordinateur reconnait l'appareil en tant que dispositif USB (COM virtuel), c'est-à-dire qu'il est détecté comme un port série COM. Windows va assigner automatiquement un port COM à l'appareil. Veuillez vérifier que Windows ait bien assigné le port COM en allant dans le "gestionnaire de périphérique".

Figure 14 – Connexion USB

Configuration USB (COM virtuel)

L'interface USB est reconnu comme un COM virtuel sur l'ordinateur, les réglages de ce port série doivent être configurés correctement pour une communication à distance réussie. Ci-dessous sont présentées les caractéristiques des ponts RLC 878B et 879B.

- Vitesse de communication: 9600 bauds
- Bits de données: 8
- Parité: Aucune
- Bit d'arrêt: 1
- Controle du flux: Aucun

Fonction USB

2 modes décrivent la fonction du pont RLC lorsqu'il est réglé pour communiquer à distance. Il y a le mode de contrôle à distance et le mode récupération automatique.

Mode contrôle à distance

Une fois la connexion effectuée, l'envoi des commandes listées dans le chapitre "Protocole des commandes" va automatiquement régler le pont RLC en mode contrôle à distance. Dans ce mode, l'écran LCD affiche l'indicateur RMT. Lorsqu'il apparait, toutes les touches du panneau

USB

(ou

USB

avant sont désactivées à l'exception de la touche

(ou usb pour le modèle 878B)

Pour quitter le mode de contrôle à distance et revenir au

mode normal, appuyez une seconde fois sur

USB pour le modèle 878B). L'indicateur RMT disparait de l'écran LCD. en appuyant encore une fois sur cette touche vous passez en mode transfert automatique qui est expliqué dans le prochain chapitre

Mode de transfert automatique

Lorsque vous connectez le pont RLC à un ordinateur, il peut être configuré en mode de transfert automatique. Cela signifie que le pont RLC transfère continuellement des données vers l'ordinateur après chaque cycle de mesure. Les données transférées sont celles des affichages principal, secondaire ainsi que le résultat des comparaison aux limites (mode tolérance). Ce mode est pratique lorsque vous effectuez des enregistrements rapides de données en utilisant l'ordinateur.

Activation/désactivation du transfert automatique

Pour basculer entre l'activation et la désactivation du

transfert automatique, appuyez sur (0)

USB pour le modèle 878B). Lorsque la fonction est activée, les données sont toujours transférées après chaque cycle de mesure. Lorsqu'elle est désactivée, aucun transfert de données n'est disponible.
Remarque: le mode de transfert automatique peut être désactivé lorsqu'une commande de contrôle à distance est envoyée à l'appareil, l'appareil repasse alors en mode de contrôle à distance. Dans ce cas, l'indicateur RMT apparait à l'écran et le mode de transfert automatique est automatiquement désactivé. Pour réactiver le mode de transfert automatique, appuyez d'abord une fois

sur (ou usb pour le modèle 878B)pour quitter le mode de contrôle à distance et retourner au mode normal. Puis, appuyez encore une fois sur cette touche pour revenir au mode de transfert automatique.

Commandes pour le pilotage à distance

Ce chapitre s'adressant à des utilisateurs expert, il est volontairement laissé en anglais, la syntaxe des commandes étant compréhensible par les techniciens développeurs.

Overview of Command Type and Format

All commands are entered in either the upper case or the lower case. There are two types of the meter

programming commands: IEEE 488 common commands and Standard Commands for Programmable Instruments (SCPI). Some commands are device-specific to the meter. They are not included in the version 1999.0 of the SCPI standard. However, these commands are designed with the SCPI format in mind and they follow the syntax rules of the standard.

Common Command Format

The IEEE 488 standard defines the common commands as commands that perform functions like reset and system query. Common commands usually come with the asterisk "*" character, and may include parameters. Some examples of Common command like: *IDN?, *GTL, *LLO.

SCPI Command Format and Query Format

The SCPI commands control instrument functions. A subsystem command has a hierarchical structure that usually consists of a top-level (or root) keyword, one or more lower level keywords, and parameters. The following example shows a command and its associated query:

A. FUNCtion:impa L

Select

L as primary parameter

B. FUNCtion:impa?

primary parameter

function is a root level keyword with the second level keyword, impa, and L is the command parameter. The query command ends with a question mark "?".

Note: SCPI stems from IEEE488.1 and IEEE 488.2. Although the IEEE 488.2 standard addressed some instrument Type des, it principally dealt with common commands and syntax or data formats. Please refer to the IEEE488.2 and SCPI reference manual for more information.

Termination Character

A terminator is a character sent by a host, which identifies the end of a command string. A valid terminator consists of two-byte data: <CR> (Carriage Return, ASC(&H0D)) or <LF> (Line Feed, ASC(&H0A)) or <CR><LF>

Responding Message

Returned result

After the meter executes a query command, the return of

Return

the result will be in the following format: $<\!\!Result\!\!> + <\!\!CR\!\!> <\!\!LF\!\!>$

For example, in auto fetching mode, the meter will send the measured data automatically when the Type de cycle is completed. The format of the printed data will be shown as the following:

<Primary measured data, Secondly measured data, Tolerance Result > + <CR> <LF>

Data Types

Returned message is an ASCII string from the meter responding to a query. A query is a command accompanied a "?" mark. Table 4 below explains the different data types.

Data Type	Explanation	Example
<nr1></nr1>	An integer	+800,-200,100,-50
<nr2></nr2>	This numeric representation has an explicit radix point	+1.56,-0.001,10.5
<nr3></nr3>	This representation	+2.345678E+04

Table 4 - Data Type of Responded Messages

	has an explicit radix	-1.345678E-01
	exponent	
<boolean></boolean>	A parameter for Boolean setting. Always return "0" or "1" for Boolean query command	ON or OFF
<literal></literal>	A string is used as command parameters with short literal form	HOLD

SCPI Commands

This section described all the SCPI commands supported by the meter. The meter can accept both upper case and lower case commands.

Table 5 - SCPI Symbol Conventions

Text Symbol	Meaning
[]	Option; can be omitted
	Exclusive OR
<>	Defined element
()	Comment

?	Question mark		
	Separated	two	command
•	keywords		

*IDN?

Description: Queries the instrument ID. Response: <instrument model>, <firmware version>, <serial number>

*LLO

Local Lockout. This means that all front panel buttons, including the "USB" key is not available.

*GTL

Go to local. Puts the meter into the local state, clearing the remote state and front panel lockout.

FREQuency Subsystem

FREQuency <value>

Description:	Set Type de frequency				
Parameters:	Parameters	are	100,	120,	1000,
	10000	(879B		only)	or
	100hz,120hz	,1khz	,10kh	z (8791	B only)
Example:	FREQuency 10	0hz			
Set 100Hz frequency					

FREQuency?

Description: Query the Type de frequency Response: 100hz, 120hz, 1khz, 10khz (*879B only*)

FUNCtion subsystem

FUNCtion:impa < L | C | R | Z >

(Z for model 879B only)

Description: Select primary parameter Example: FUNCtion:impa L Selects L as primary parameter

FUNCtion:impa?

Description: Query primary parameter Response: Return L, C, R, Z (879B only),NULL

FUNCtion:impb < D | Q | THETA | ESR >

(THETA and ESR for model879B only)

Description: Select secondly parameter Example: FUNCtion:impb D

Select D as secondly parameter

FUNCtion:impb?

Description: Query secondly parameter Response: Return D, Q, THETA (*879B only*), ESR (*879B only*), NULL

FUNCtion:EQUivalent < Série | Parallèle | PAL >

Description: Set equivalent mode Parameters: Série — serial mode Parallèle — Parallèle mode Pal — Parallèle mode Example: FUNCtion:EQUivalent Série Set Série mode

FUNCtion:EQUivalent?

Description	n: Query t	Query the equivalent mode		
Response:	Return	"SER"	or	"PAL"
format	string			

CALCulate subsystem

CALCulate:RELative:STATe < ON | OFF >

Description:	Enable or disable relative function
Example:	CALCulate:RELative:STATe
ON	

CALCulate:RELative:STATe?

Description:	Query the relative state
Response:	Return ON or OFF

CALCulate:RELative:VALUe?

Description: Query the relative value Response: Return <NR3> or "-----" format string

CALCulate:TOLerance:STATe < ON | OFF >

Description: Enable or disable tolerance function Example: CALCulate:TOLerance:STATe ON

CALCulate:TOLerance:STATe?

Description: Query the tolerance state Response: Return ON or OFF

CALCulate:TOLerance:NOMinal?

Description: Query the nominal value of tolerance Response: Return <NR3> or "-----" format string

CALCulate:TOLerance:VALUe?

Description: Query the percent value of tolerance Response: Return <NR3> or "-----" format string

CALCulate:TOLerance:Gamme < 1 | 5 | 10 | 20 >

Description: Set tolerance Gamme Parameters: 20 (*879B only*) Example: CALCulate:TOLerance:Gamme 1

Set 1% tolerance Gamme

CALCulate:TOLerance:Gamme?

Description: Query the tolerance Gamme Response: Return "BIN1", "BIN2", "BIN3", "BIN4" or "----" format string

CALCulate:RECording:STATe < ON | OFF >

Description: Enable or disable recording function Example: CALCulate:RECording:STATe ON

CALCulate:RECording:STATe?

Description: Query the recording state Response: Return ON or OFF

CALCulate:RECording:MAXimum?

Description: Query the maximum value of recording function Response: Return <NR3, NR3> or "-----" format string

CALCulate:RECording:MINimum?

Description: Query the minimum value of recording function Response: Return <NR3, NR3> or "-----" format string

CALCulate:RECording:AVERage?

Description: Query the average value of recording function Response: Return <NR3, NR3> or "-----" format string

CALCulate:RECording:PRESent?

Description	: Query	the pr	esent v	alue of re	cording
function					
Response:	Return	<nr3,< td=""><td>NR3></td><td>or ""</td><td>format</td></nr3,<>	NR3>	or ""	format
string					

FETCh Subsystem

FETCh?

Description:	Returns	the	primary,	secondary
	display	valu	e and	tolerance
	compared	l resu	It of devi	ce's output
	buffer.			
Response: Re	turn <nr3,< td=""><td>NR3,</td><td>, NR1> for</td><td>mat string</td></nr3,<>	NR3,	, NR1> for	mat string
Example: FET	Ch?			

Summary of Supported SCPI Commands

Table 6 - Summary of SCPI Commands

Command	Parameter	Explanation
FREQuency	<value></value>	Set Test Frequency
FREQuency?		Query Test Frequency
FUNCtion		
:impa	<literal></literal>	Select primary display parameter
:impa?		Query primary display parameter
:impb	<literal></literal>	Select secondary display parameter
:impb?		Query secondary display parameter
:EQUivalent	<literal></literal>	Set equivalent mode
:EQUivalent?		Query equivalent mode
CALCulate		
:RELative		
:STATe	<boolean></boolean>	Enable/disable relative function
:STATe?		Query relative state
:VALUe?		Query relative value
:TOLerance		
:STATe	<boolean></boolean>	Enable/disable tolerance function
:STATe?		Query tolerance state
:NOMinal?		Query nominal value of tolerance
:VALUe?		Query percent of tolerance

:RANG	<value></value>	Set tolerance Gamme
:Gamme?		Query tolerance Gamme
:RECording		
:STATe	<boolean></boolean>	Enable/disable recording
		function
:STATe?		Query recording state
:MAXimum?		Query max. value of recording
:MINimum?		Query min. value of recording
:AVERage?		Query average value of
		recording
:PRESent?		Query present value of
		recording
FETCh?		Return data any time last
		reading is valid

Error Codes

In certain situations, errors may occur, and an error code will be displayed on the meter. Below defines the error description based on the error code.

- E10: Unknown command
- E11: Parameter Error
- E12: Syntax Error

INFORMATIONS SUPPLEMENTAIRES

Ce chapitre apporte des informations supplémentaires concernant l'utilisation du pont RLC. Les conseils et les explications de ce chapitre vous permettront de réaliser des mesures rapides et précises.

Choix de la fréquence de test

La fréquence de test peut considérablement affecter les résultats de mesure, surtout pour des mesures d'inductances et de condensateurs. Ce chapitre apporte des conseils et des suggestions à appliquer.

Capacité

Lorsque vous effectuez des mesures de capacité, trouver la bonne fréquence est important pour la précsion. Généralement, une fréquence de test de 1 kHz est utilisée pour mesurer des condensateurs qui sont d'une taille de $0.01 \ \mu\text{F}$ ou plus petite. Pour les condensateurs qui mesurent 10 μF ou plus, la fréquence la plus basse utilisée est de 120 Hz. En suivant cette logique, les fréquences de test élevées sont préférables pour tester des composants de faible valeur. En revanche pour les composants de fortes valeurs, les fréquences basses sont optimales. Par exemple, si la capacité du composant est dans la gamme mF, alors en choisissant 100 Hz ou 120 Hz en fréquence de test, les résultats seront meilleurs. Si le même composant est testé avec 1 kHz ou 10 kHz, les valeurs mesurées seraient erronées.

Dans tous les cas, il est préférable de se référer à la fiche technique du fabricant dans le but de déterminer la meilleure fréquence de test à utiliser pour les mesures.

Inductance

En général, une fréquence de test de 1 kHz est utilisée pour mesurer des inductances qui sont utilisés dans des circuits audio et RF car ces composants fonctionnent avec des fréquences élevées et nécessitent qu'ils soient mesurés à des fréquences élevées telles que 1 kHz ou 10 kHz. Cependant, signal de test de 120 Hz est utilisé pour mesurer des inductances qui servent pour des applications comme par exemple les filtres BF dans les alimentations qui fonctionnent généralement à 50/60Hz avec des fréquences de filtre de 120 Hz.

Généralement, les inductances inférieures à 2 mH doivent être mesurées à une fréquence de 1kHz alors que les inductances au-dessus de 200 H doivent être mesurées à 120 Hz.

Dans tous les cas, il est préférable de se référer à la fiche

technique du fabricant dans le but de déterminer la meilleure fréquence de test à utiliser pour les mesures.

Choix du mode en série ou en parallèle.

Bien que la fréquence de test puisse affecter considérablement les résultats des mesures, le choix entre le mode de mesure en série ou en parallèle affecte également la précision du pont RLC surtout dans le cas de mesure de composants capacitifs ou inductifs. Cidessous vous trouverez les recommandations à suivre.

Capacité

Pour la plupart des mesures de capacité, le mode de mesure le plus performant est le mode parallèle. Ainsi, le pont RLC se met par défaut dans ce mode lorsque le mode capacité est sélectionné. La plupart des condensateurs ont des facteurs de dissipation très bas (résistance interne élevée) comparé à l'impédance des condensateurs. Dans ce cas, la résistance interne en parallèle a un impact négligeable sur les mesures.

Cependant dans certaines conditions, le mode série est préféré. Par exemple, la mesure d'un gros condensateur nécessite l'utilisation du mode série sinon le pont RLC pourraient afficher des résultats très erronés. Le mode série est utilisé car les gros condensateurs ont souvent des facteurs de dissipation élevé et une résistance interne plus basse.

Inductance

Pour la plupart des mesures d'inductance, le mode le plus performant est le mode en série. Ainsi, le pont RLC se met par défaut dans ce mode lorsque le mode d'inductance est sélectionné. Ainsi les mesures de Q (facteur de qualité) seront précises.

Cependant dans certains cas, le mode en parallèle est préféré. Par exemple, des inductances à noyau de fer fonctionnant à des fréquences élevées dans lesquels les courants de Foucault et l'hystérésis deviennent significatifs, nécessitent des mesures en mode en parallèle pour des résultats précis.

Problèmes de précision

Dans certains cas particuliers, des erreurs peuvent se produire dans la mesure de composants capacitifs, inductifs et résistifs.

Capacité

Lors de la mesure de condensateurs, il est toujours plus souhaitable que le facteur de dissipation soit bas. Les condensateurs électrolytiques ont intrinsèquement un facteur de plus de dissipation dû à leurs caractéristiques normales de fuite interne élevée. Dans certains cas, le facteur D (facteur de dissipation) est important, la précision des mesures pourrait s'en trouvée affectée.

Inductance

Certains inductances sont conçues pour fonctionner avec une polarisation DC pour obtenir une valeur d'inductance spécifique. Cependant, le pont RLC 878B et 879B ne peuvent pas produire un tel schéma de polarisation et une polarisation externe ne pourra pas être essayé car l'alimentation externe sera appliquée à l'appareil et pourrait provoquer des dommages sérieux au pont RLC. Donc, dans ces cas, la lecture d'inductance mesurée n'est peut pas être pas en accord avec les spécifications du fabricant. Il est très important de vérifier si les spécifications sont définies avec une polarisation DC ou non.

Résistance

Lorsque vous mesurez la résistance de dispositifs, il est important de savoir qu'il y a 2 manières d'effectuer les mesures. L'une la mesure de résistance en courant continu et l'autre la mesure de résistance en courant alternatif. Les ponts RLC 878B et 879B utilisent des mesures de résistance en courant alternatif et ne possèdent pas l'option de mesure en courant continu. Donc, lorsque vous mesurez un composant résistif qui est conçu pour être mesuré en courant continu, les lectures peuvent être incorrectes ou imprécises. Avant d'utiliser le pont RLC pour effectuer une mesure de résistance, veuillez vérifier si le DUT (appareil soumis au test) nécessite une méthode de mesure de résistance en courant continu ou alternatif. Selon les modèles, les résultats peuvent varier considérablement.

Borne de garde

Une des bornes d'entrée a une étiquette "**PROTECTION**". Cette borne ne doit pas être utilisée pour chaque utilisation du pont RLC. Néanmoins dans certains cas cette borne est très utile. La borne garde est utile dans deux cas.

Si l'utilisateur utilise des fils de test blindés, la borne de garde peut être utilisée pour se connecter au blindage des fils de test. Ce procédé peut être très utile lorsque vous effectuez des mesures sur des composants résistifs de valeur élevée. Par exemple, lorsque vous mesurez une résistance de 10 M Ω avec des fils de test, la lecture peut paraitre instable. En connectant le blindage des fils de test à la borne de garde, la lecture se stabilise dans certains cas.

La borne de garde est également utilisée pour minimiser le bruit et les effets parasites venant des composants mesurés, ce qui permet des résultats de grande précision.

SPECIFICATIONS

Les spécifications sont sujettes à être modifiées sans préavis et sont données dans les conditions ci-dessous :

- 1. Les mesures sont effectuées sur les bornes de test.
- 2. Les mesures sont effectuées après une calibration.
- 3. Le DUT et les fils de test doivent être raccordés à la borne de garde, si nécessaire.
- Temps de stabilisation de 30 minutes et fonctionnement de l'appareil entre 23°C et 5°C, <75% R.H.
- 5. Q est l'inverse du DF.
- Précisions données de10% à 100% de la gamme. EN dehors, les valeurs mesurées doivent être considérées comme indicatives.
- 7. L'appareil est alimenté par pile.
- 8. --- signifie mode de mesure série ou parallèle.

Spécifications générales

	879B	878B	
Paramètres mesurés	L/C/R/Z/D/Q/0/ESR	L/C/R/D/Q	
Méthode de mesure	Mode série ou mode parallèle		
Précision de base	0.5%		
Gammes	automatiques		
Bornes de mesure	3 bornes + griffes porte	e composants	
Fréquence de test	100 Hz, 120 Hz,	120 Hz, 1 KHz	
	1 KHz, 10 KHz		
Mode tolérance	1 %, 5 %, 10 %,	1 %, 5 %, 10 %	
	20 %		
Amplitude du signal	0.6 Veff. environ		
de test		-	
Rétro-éclairage	oui	non	
Cadence de mesure	1 mes/s (une fois sur la	gamme)	
Arrêt automatique	5, 15, 30, 60 min. ou sa	ans	
Température	0° to 40 °C; 0-70 % R.	H.	
d'utilisation			
Température de	-20° to +50°C; 0-80 %	R.H.	
stockage			
Indication pile faible	à. 6.8 V environ		
Consommation	28 mA (avec pile neu	ive) / 2 µA après	
	l'arrêt		
Alimentation	1) pile 9V 6F22		
	2) Adaptateur externe 12 Vmin -15		
	Vmax. (délivrant 50mA.)		
Dimensions (L/W/H)	$190 \times 90 \times 41 \text{ mm}$		
Masse	330 g		

Spécifications électriques

Inductance

Fréquence = 100 Hz/120 Hz

	Affichage	Lx	DF(Dx<	Type de
Gamme	max.	Précision	0.5)	Mesure
		1.5% <u>+</u> 3	1.5% <u>+</u> 20	
1000 H	1000.0 H	digits	digits	Parallèle
		0.7% <u>+</u> 2	0.7% <u>+</u> 20	
400 H	399.99 H	digits	digits	Parallèle
		0.7% <u>+</u> 2	0.7% <u>+</u> 10	
40 H	39.999 H	digits	digits	
		0.5% <u>+</u> 1	0.5% <u>+</u> 10	
4000 mH	3999.9 mH	digits	digits	Série
		0.6% <u>+</u> 2	0.6% <u>+</u> 20	
400 mH	399.99 mH	digits	digits	Série
		0.9% <u>+</u> 2	0.9% <u>+</u> 35	
40 mH	39.999 mH	digits	digits	Série
		2.8% <u>+</u> 3	2.8% <u>+</u> 45	
4 mH	3.9999 mH	digits	digits	Série

Fréquence = 1 kHz

	Affichage	Lx	DF(Dx	Type de
Gamme	max.	Précision	<0.5)	Mesure
		1.5% <u>+</u> 3	1.5% <u>+</u> 20	
100 H	100.00 H	digits	digits	Parallèle
		0.7% <u>+</u> 2	0.7% <u>+</u> 10	
40 H	39.999 H	digits	digits	Parallèle
		0.7% <u>+</u> 2	0.7% <u>+</u> 10	
4000 mH	3999.9 mH	digits	digits	
		0.5% <u>+</u> 1	0.5% <u>+</u> 15	
400 mH	399.99 mH	digits	digits	Série
		0.6% <u>+</u> 2	0.6% <u>+</u> 10	
40 mH	39.999 mH	digits	digits	Série
		0.9% <u>+</u> 2	0.9% <u>+</u> 45	
4000 µH	3999.9 μH	digits	digits	Série
		2.8% <u>+</u> 3	2.8% <u>+</u> 45	
400 µH	399.99 μH	digits	digits	Série

Fréquence = 10 kHz

	Affichage	Lx	DF(Dx	Type de
Gamme	max.	Précision	< 0.5)	Mesure
		1.5% <u>+</u> 3	1.5% <u>+</u> 10	
1000 mH	1000.0 mH	digits	digits	Parallèle
		0.7% <u>+</u> 2	0.7% <u>+</u> 20	
400 mH	399.99 mH	digits	digits	
		0.5% <u>+</u> 1	$0.5\% \pm 10$	
40 mH	39.999 mH	digits	digits	Série
		0.6% <u>+</u> 2	0.6% <u>+</u> 10	
4000 µH	3999.9 μH	digits	digits	Série
		0.9% <u>+</u> 2	0.9% <u>+</u> 30	
400 µH	399.99 μH	digits	digits	Série
		2.8% <u>+</u> 3	2.8% <u>+</u> 40	
40 µH	39.999 µH	digits	digits	Série

<u>Capacité</u>

Fréquence = 100 Hz/120 Hz

	Affichage	Cx	DF(Dx	Type de
Gamme	Max.	Précision	< 0.5)	Mesure
		8% <u>+</u> 3	8% <u>+</u> 45	
20 mF	20.000 mF	digits	digits	Série
		2% <u>+</u> 2	2% <u>+</u> 35	
4000 µF	3999.9 μF	digits	digits	Série
		0.7% <u>+</u> 2	0.7% <u>+</u> 20	
400 µF	399.99 μF	digits	digits	Série
		0.5% <u>+</u> 1	0.5% <u>+</u> 10	
40 µF	39.999 nF	digits	digits	Série
		0.5% <u>+</u> 1	0.5% <u>+</u> 10	
4000 nF	3999.9 nF	digits	digits	
		0.5% <u>+</u> 2	0.5% <u>+</u> 20	
400 nF	399.99 nF	digits	digits	
		0.7% <u>+</u> 1	0.7% <u>+</u> 10	
40 nF	39.999 nF	digits	digits	Parallèle
		2.5% <u>+</u> 2	2.5% <u>+</u> 20	
4 nF	3.9999 nF	digits	digits	Parallèle

Fréquence = 1 kHz

	Affichage	Cx	DF(Dx	Type de
Gamme	Max.	Précision	<0.5)	Mode
		3.7% <u>+</u> 3	3.7% <u>+</u> 45	
1000 µF	1000.0 µF	digits	digits	Série
		2% <u>+</u> 2	2% <u>+</u> 45	
400 µF	399.99 μF	digits	digits	Série
		0.7% <u>+</u> 2	0.7% <u>+</u> 10	
40 µF	39.999 µF	digits	digits	Série
		0.5% <u>+</u> 1	0.5% <u>+</u> 15	
4000 nF	3999.9 nF	digit	digit	Série
		0.5% <u>+</u> 2	0.5% <u>+</u> 10	
400 nF	399.99 nF	digits	digits	
		0.5% <u>+</u> 2	0.5% <u>+</u> 10	
40 nF	39.999 nF	digits	digits	
		0.7% <u>+</u> 2	0.7% <u>+</u> 10	
4000 pF	3999.9 pF	digits	digits	Parallèle
		2.5% <u>+</u> 2	2.5% <u>+</u> 20	
400 pF	399.99 pF	digits	digits	Parallèle

Fréquence = 10 kHz

	Affichage	Cx	DF(Dx	Type de
Gamme	Max.	Précision	<0.5)	Mesure
		3.9% <u>+</u> 5	3.9% <u>+</u> 40	
100 µF	100.00 µF	digits	digits	Série
		3.7% <u>+</u> 3	3.7% <u>+</u> 30	
40 µF	39.999 µF	digits	digits	Série
		0.7% <u>+</u> 2	0.7% <u>+</u> 20	
4000 nF	3999.9 nF	digits	digits	Série
		0.5% <u>+</u> 2	0.5% <u>+</u> 10	
400 nF	399.99 nF	digits	digits	Série
		0.5% <u>+</u> 1	0.5% <u>+</u> 10	
40 nF	39.999 nF	digit	digit	
		0.5% <u>+</u> 2	0.5% <u>+</u> 10	
4000 pF	3999.9 nF	digits	digits	
		0.7% <u>+</u> 2	0.7% <u>+</u> 20	
400 pF	399.99 pF	digits	digits	Parallèle
		2.5% <u>+</u> 2	2.5% <u>+</u> 10	
40 pF	39.999 pF	digits	digits	Parallèle

Résistance/Impédance

Fréquence = 100 Hz/120 Hz/ 1 kHz/10 kHz

	Affichage	R/Zx Θ		Type de
Gamme	Max.	Précision Précision		Mesure
		5.5% <u>+</u> 3		
10 MΩ	$10.000 \text{ M}\Omega$	digits	±3.2°	Parallèle
		2.5% <u>+</u> 2		
4000 kΩ	3999.9 kΩ	digits	±1.5°	Parallèle
		0.7% <u>+</u> 2		
400 kΩ	399.99 kΩ	digits	±0.4°	Parallèle
		0.5% <u>+</u> 2		
40 kΩ	39.999 kΩ	digits	±0.3°	
		0.5% <u>+</u> 2		
4000 Ω	3999.9 Ω	digits	±0.3°	
		0.5% <u>+</u> 2		
400 Ω	399.99 Ω	digits	±0.3°	Série
		0.7% <u>+</u> 2		
40 Ω	39.999 Ω	digits	±0.4°	Série
		2.0% <u>+</u> 2		
4 Ω	3.9999 Ω	digits	±1.2°	Série

ESR

Fréquence = 100 Hz/120 Hz/1 kHz/10 kHz

	Affichage	ESR	Type de
Gamme	Max.	Précision	Mesure
		0.5% <u>+</u> 2	
1000 Ω	999.9 Ω	digits	Série
		0.5% + 2	
100 Ω	99.99 Ω	digits	Série
		0.7% <u>+</u> 2	
10 Ω	9.999 Ω	digits	Série
		2.0% <u>+</u> 2	
1 Ω	.9999 Ω	digits	Série

MAINTENANCE

ATTENTION: Ne jamais tenter de réparer votre appareil. La maintenance doit être réalisée par du personnel qualifié.

Réparation

Si l'appareil venait à tomber en panne, avant de le renvoyer à votre distributeur, il est important de vérifier que la pile est en bon état, et le cas échéant la changer.

Remarque: pour changer la pile, se référer au paragraphe correspondant de ce manuel.

Nettoyage

Attention: Pour éviter tout risqué de choc électrique et pour éviter d'endommager l'électronique interne, ne jamais mouiller ou faire rentrer de l'eau dans l'appareil.

Avant de nettoyer l'appareil, toujours s'assurer qu'il est arrêté. Le cas échéant, débrancher l'adaptateur secteur externe. Nettoyer avec un chiffon doux et humide. Ne jamais utiliser de solvants, de détergents ou de tissus abrasifs. Après nettoyage et avant utilisation, toujours s'assurer que l'appareil est bien sec, en particulier au niveau des bornes d'entrée.

SEFRAM 32, rue Edouard Martel BP 55 42009 – SAINT-ETIENNE Cedex

Tel : 0825 56 50 50 (0,15€/mn) Fax : 04 77 57 23 23 Web : <u>www.sefram.fr</u> Mail: <u>sales@sefram.fr</u>

Modèle BK880 Pont RLC portable MANUEL D'UTILISATION

Consignes de sécurité

ATTENTION

Avant de mettre en marche cet appareil :

- Lisez attentivement les consignes de sécurité et les informations sur le fonctionnement de cet appareil contenues dans ce manuel.
- Respectez toutes les consignes de sécurité.
- Vérifiez que la tension au cordon d'alimentation respecte la tension recommandée. Utiliser cet appareil avec une tension incorrecte annulera votre garantie.
- Faites toutes les connexions à l'appareil avant de le mettre en marche.
- N'utilisez pas l'appareil dans un domaine non spécifié dans ce manuel ou par B&K Precision.

Le non-respect de ces précautions et avertissements contenus dans ce manuel conduit à une violation des normes de sécurité conformes au design, à la fabrication, et à l'utilisation prévue de l'instrument. B&K Precision n'est pas responsable du non-respect d'un client vis-à-vis de ces conditions.

Catégorie d'installations

Les normes IEC 61010 définissent la catégorie d'installation qui spécifie la quantité d'énergie électrique disponible et les impulsions de tensions qui peuvent avoir lieu sur les conducteurs électriques associés à ces catégories d'installation. La catégorie d'installation apparaît sous forme de chiffres romains soit I, II, III ou IV. Cette installation est également accompagnée de la tension maximum du circuit soumise à des essais, qui définit les impulsions de tensions attendues et les distances d'éloignement requises. Ces catégories sont :

Category I (CAT I): Les instruments de mesure, dont les entrées de mesures ne sont pas destinées à être connectées au secteur. Les tensions dans l'environnement sont souvent issues d'un transformeur à énergie limitée ou d'une batterie.

Category II (CAT II): Les instruments de mesure, dont les entrées de mesures sont faites pour être connectées au secteur sur une prise murale standard, ou sur des sources similaires. Les outils portatifs et les appareils ménagers sont des exemples d'environnements de mesure.

Category III (CAT III): Les instruments de mesure, dont les entrées de mesure sont faites pour être connectées au secteur d'un bâtiment. Par exemple, les mesures au sein du panneau électrique d'un bâtiment ou le câblage de moteur.

Category IV (CAT IV): Les instruments de mesure, dont les entrées de mesure sont faites pour être connectées à l'énergie primaire entrant dans le bâtiment, ou à d'autres câblages extérieurs.

ATTENTION

N'utilisez pas l'appareil dans un environnement électrique avec une catégorie d'installation plus élevée que celle spécifiée dans le manuel.

AWARNING

ATTENTION

Assurez-vous que tous les accessoires que vous utilisez avec cet instrument ont une catégorie d'installation supérieure ou égale à celle de l'appareil pour maintenir la catégorie d'installation de l'instrument. Sinon cela risquerait de diminuer la catégorie d'installation du système de mesure.

Energie électrique

Cet instrument est destiné à être alimenté par une alimentation réseau de catégorie II. L'alimentation secteur doit être de 115V eff. ou de 230V eff. N'utilisez que le cordon électrique fournit avec l'appareil et assurez-vous qu'il est approprié pour le pays d'utilisation.

ATTENTION

Si l'instrument n'est pas utilisé pendant une longue période, retirez les piles.

ATTENTION

Lors du changement des piles de l'appareil, déconnectez toutes tous les fils connectés à l'appareil avant de remplacer les piles. Remplacer les piles avec d'autres piles de types et valeurs strictement identiques.

Débranchez toutes les cordons de test de l'appareil avant de remplacer les piles.

Ne pas utiliser dans une atmosphère explosive.

ATTENTION

Ne pas utiliser l'appareil en présence de gaz inflammables ou d'émanations. L'utilisation d'un appareil électrique dans un tel environnement compromet votre sécurité.

WARNING

ATTENTION

L'appareil est conçu pour être utilisé à l'intérieur. Ne pas utiliser l'appareil :

- En présence de fumées, de gaz, de vapeurs, de produits chimiques ou de poussières, corrosives ou inflammables.
- Dans des conditions d'humidité relative, en dehors des spécifications de l'instrument.
- Dans un environnement où il existe tout risque d'éclaboussure ou de condensation de liquide sur l'instrument.
- A température ambiante qui dépasse les températures d'utilisation recommandées.
- A une pression atmosphérique qui dépasse la limite d'altitude spécifiée, là où le gaz environnant n'est pas de l'air.
- Dans un environnement ou le flux d'air de refroidissement est restreint, même si la température ambiante correspond aux spécifications.
- En plein soleil.

WARNING

Ne pas faire fonctionner l'appareil en présence de gaz inflammables, de vapeurs, d'émanations ou de poussières.

- Cet appareil est destiné à un usage dans un environnement de type bureau (à l'intérieur) avec un degré de pollution de 2. La température de fonctionnement doit être comprise entre 0°C et 40°C, et la gamme d'humidité relative doit être comprise entre 20% et 80%, sans condensation.
- Les mesures réalisées par cet appareil peuvent ne pas correspondre aux spécifications si l'instrument est utilisé dans un environnement autre que celui spécifié, qui pourrait inclure des variations rapides de température ou d'humidité, une forte exposition au soleil, des vibrations et/ou des chocs mécaniques, un bruit acoustique ou électrique, de forts champs électriques ou magnétiques.

Ne pas utiliser l'instrument s'il est endommagé

ATTENTION

Si l'instrument est endommagé, semble endommagé ou si un liquide, un produit chimique, ou tout autre substance entre en contact avec l'instrument, débranchez le câble d'alimentation, mettez l'instrument hors-service, indiquez le disfonctionnement et renvoyez le à votre distributeur pour le faire réparer. Informez votre distributeur de toute contamination de l'instrument.

Ne nettoyer l'instrument qu'en suivant les instructions

Ne nettoyer pas l'instrument, ses interrupteurs, ou ses bornes avec des solvants, des produits abrasifs, des lubrifiants, des nettoyants à base d'acides ou d'autres produits chimiques. Ne nettoyer l'instrument qu'à l'aide d'un chiffon doux non-pelucheux et sec comme indiqué dans le manuel.

Non destiné à la réanimation

Cet appareil n'est pas conçu pour être en contact avec le corps humain ou pour être utilisé en tant que composant pour un équipement ou un système de survie.

Ne touchez pas les circuits

Les couvercles ou les panneaux de l'appareil ne doivent pas être retirés par l'utilisateur. Le remplacement des composants et les ajustements internes doivent être effectués par un personnel qualifié, conscient des risques lorsque les panneaux de l'appareil ont été retirés. Dans certaines conditions, des risques peuvent exister même lorsque le câble d'alimentation a été débranché. Afin d'éviter tout risque de dommages corporels, débranchez le câble d'alimentation, déconnectez toutes les autres connexions (par exemple : les sondes de test, les câbles d'interface pour l'ordinateurs etc.), vérifiez qu'il n'y a pas d'autre tension dangereuse présente sur aucun conducteur de mesure avec un détecteur de tension avant de toucher tout composant interne. Vérifiez que le détecteur de tension fonctionne correctement avant et après avoir effectué les mesures en le testant sur des sources de tensions connues et testez le sur la tension DC et la tension AC. N'essayez pas de réparer ou faire des ajustements sur cet appareil à moins qu'une personne capable de vous procurer des soins ou de vous réanimer ne soit présente.

N'insérez aucun objet dans la ventilation ou les autres ouvertures.

Des tensions dangereuses peuvent être présentes à des endroits inattendus dans le circuit sous test quand un défaut est présent dans le circuit.

Remplacement du fusible

Le remplacement du fusible doit être effectué par un personnel qualifié, connaissant des caractéristiques du fusible et habilité à exécuter le remplacement en toute sécurité. Déconnectez l'appareil du cordon d'alimentation avant de procéder au changement des fusibles. Remplacez les fusibles avec des fusibles de types et valeurs strictement identiques, spécifiés dans ce manuel ou à l'arrière de l'appareil. En cas de non-respect de ces consignes, des dommages peuvent être causés à l'appareil, engendrer des risques compromettant votre sécurité, ou déclencher un incendie. Utiliser des fusibles inappropriés annulera votre garantie.

WARNING

Le remplacement des fusibles de protection dans les appareils est important. Ces fusibles doivent être remplacés par des fusibles de types et valeurs identiques comme spécifié dans ce manuel afin de maintenir la catégorie d'installations de cet appareil.

Entretien

Ne substituez pas les parties non-approuvées par B&K Precision (votre fournisseur) et ne modifiez pas cet appareil. Renvoyez cet appareil à votre fournisseur pour l'entretien et le service pour que ces opérations soient effectuées en toute sécurité.

Il est recommandé que l'appareil soit retourné à votre fournisseur pour son entretien et pour effectuer une vérification périodique de sa calibration, afin de vérifier que l'appareil fonctionne correctement dans ses spécifications.

Ne modifiez pas l'instrument et ne substituez pas des parties

N'installez pas de parties substituées et ne modifiez pas cet appareil. Renvoyez l'appareil à votre fournisseur pour son entretien et sa réparation pour que ces opérations soient effectuées en toute sécurité.

Sensibilité aux DES (Décharges Electro Statiques)

WARNING

Cet appareil utilise des composants qui peuvent être endommagés par des décharges électrostatiques. Afin d'éviter tout dommage, merci de suivre les procédures recommandées pour la manipulation, le stockage et le transport des pièces et des sous-ensembles qui contiennent des composants sensibles aux décharges électrostatiques.

Mesurer la résistance

Les mesures de la résistance des circuits qui contiennent des offsets (tensions résiduelles de faible valeur) peuvent produire des résultats erronés. Afin de minimiser les effets de ces offset, mesurez la résistance avec des cordons de test à polarité normale et inversée ce qui donne la moyenne de résultats, même si un des résultats affiche une résistance négative.

Expédition

Il est recommandé de renvoyer l'emballage d'origine dans lequel l'instrument a été empaqueté. Cela vous permettra de renvoyer l'équipement à votre fournisseur en cas de nécessité. Si l'emballage d'origine n'est pas disponible, utilisez un emballage de substitution avec la même protection et le même rembourrage que l'emballage d'origine. Contactez votre fournisseur pour avoir plus de précisions sur l'expédition.

Prescriptions de sécurité

Pour une utilisation en toute sécurité, référez-vous aux prescriptions de sécurité ci-dessous.

- Cet appareil est conçu pour un usage à l'intérieur, pour une altitude de 2000m maximum.
- Les prescriptions et consignes de sécurité doivent être lues et comprises avant d'utiliser l'appareil.
- Lors de la mesure des composants montés sur des circuits, vérifiez d'abord que les circuits soient hors-tensions avant de brancher les sondes de test.
- Déchargez les condensateurs avant de procéder au test.
- L'appareil est conforme à la norme EN61010 (IEC 1010-1) catégorie d'installation II (CAT II) 50 V, degré de pollution 2.
- N'utilisez l'appareil que selon les modes opératoires spécifiés dans ce manuel. Dans le cas contraire, la protection fournie par l'appareil pourrait se dégrader.
- L'alimentation de l'appareil est assurée par une pile 9V. Il est également possible d'utiliser un adaptateur secteur 12 V. Il est important de s'assurer que l'adaptateur secteur soit conforme aux normes de sécurité CEI. Contactez votre distributeur en cas de doute.

Autres prescriptions de sécurité

Pour utiliser cet instrument en toute sécurité :

- Ne placez pas d'objet lourd sur l'appareil.
- N'obstruez pas le ventilateur de l'appareil.
- Ne placez pas un fer à souder sur l'appareil.
- Ne tirez pas l'appareil par les sondes ou les cordons de test.
- Ne déplacez pas l'appareil lorsqu'un câble le relie à un circuit en cours de test.

Symboles de sécurité

	Référez-vous au manuel d'utilisation pour éviter les risques de dommages corporels et dommages infligés à
A	Risque de choc électrique
~	Courant alternatif (CA)
#	Châssis (mise en terre)
<u> </u>	Borne de mise en terre
	Courant DC
⊕-•-⊖	Indique que la broche intérieure est positive, extérieure est négative. (-)
	CAUTION indique une situation dangereuse qui peut causer des dégâts mineurs à modérés.
	WARNING indique une situation dangereuse qui peut provoquer des blessures graves ou mortelles.
A DANGER	DANGER indique une situation dangereuse qui peut provoquer des blessures graves ou mortelles.
NOTICE	NOTICE est utilisée pour identifier les risques qui n'engendrent pas de blessures physiques.

Déclaration de confidentialité

Elimination d'ancien équipements Electriques et Electroniques. (Applicable au sein de l'Union Européenne et des autres pays Européens avec un système de collecte séparé).

Ce produit est soumis à la Directive 2002/96/EC du Parlement Européen et du Conseil de l'Union Européenne sur les déchets des équipements électroniques (WEEE), et sous la juridiction de cette Directive, ce produit a été mis sur le marché après le 13 Aout 2005 et ne doit pas être jeté avec les déchets ménagers non-triés. Ce produit doit être recyclé. Contactez votre distributeur.

Conditions d'utilisation

Température d'utilisation	0 °C à 40 °C
Humidité relative	0 – 80% HR
Température de stockage	-20 °C à +50 °C
Degré de pollution	2

SOMMAIRE

Consignes de sécurité	1
Prescriptions de sécurité	7
Symboles de sécurité	8
Déclaration de confidentialité	9
SOMMAIRE	10
INTRODUCTION	13
CONTENU DE L'EMBALLAGE	13
APERCU DU PANNEAU AVANT	14
Description du panneau avant	14
Touches du panneau avant	15
VUE D'ENSEMBLE DU LCD	16
LCD Display Descriptions	16
Indicateurs spéciaux	17
Les entrées de mesure	
ALIMENTER L'APPAREIL	19
Installation de la pile	19
Connexion de l'alimentation externe	
Indicateur de pile faible	21
Rétro-éclairage de l'écran.	21
Lorsque l'appareil fonctionne sur pile	
Lorsque l'appareil fonctionne avec une alimentation externe	
Lorsque l'appareil fonctionne avec une alimentation externe Circuit de charge	22
Lorsque l'appareil fonctionne avec une alimentation externe Circuit de charge MISE EN OEUVRE	22
Lorsque l'appareil fonctionne avec une alimentation externe Circuit de charge MISE EN OEUVRE Fonction HOLD.	
Lorsque l'appareil fonctionne avec une alimentation externe Circuit de charge MISE EN OEUVRE Fonction HOLD Activation de la fonction HOLD	22 22 23 23 23 23
Lorsque l'appareil fonctionne avec une alimentation externe Circuit de charge MISE EN OEUVRE Fonction HOLD Activation de la fonction HOLD Désactivation de la fonction HOLD	22 22 23 23 23 23 23 23
Lorsque l'appareil fonctionne avec une alimentation externe	22 22 23 23 23 23 23 23 23
Lorsque l'appareil fonctionne avec une alimentation externe Circuit de charge MISE EN OEUVRE Fonction HOLD. Activation de la fonction HOLD. Désactivation de la fonction HOLD. Enregistrement de données (REC) Activation d'enregistrement statique.	22 22 23 23 23 23 23 23 23 23 23
Lorsque l'appareil fonctionne avec une alimentation externe Circuit de charge MISE EN OEUVRE Fonction HOLD. Activation de la fonction HOLD . Désactivation de la fonction HOLD. Enregistrement de données (REC) . Activation d'enregistrement statique. Utilisation de l'enregistrement statique	22 22 23 23 23 23 23 23 23 23 23 23 23
Lorsque l'appareil fonctionne avec une alimentation externe Circuit de charge MISE EN OEUVRE Fonction HOLD. Activation de la fonction HOLD. Désactivation de la fonction HOLD. Enregistrement de données (REC) Activation d'enregistrement statique. Utilisation de l'enregistrement statique. Calibration (CAL).	22 22 23 23 23 23 23 23 23 23 23 23 23 2
Lorsque l'appareil fonctionne avec une alimentation externe	22 22 23 23 23 23 23 23 23 23 23 23 23 2
Lorsque l'appareil fonctionne avec une alimentation externe Circuit de charge MISE EN OEUVRE Fonction HOLD. Activation de la fonction HOLD Désactivation de la fonction HOLD. Enregistrement de données (REC) Activation d'enregistrement statique. Utilisation de l'enregistrement statique Calibration (CAL). Démarrer une Calibration. Open Cal. Short Cal/calibration en court-circuit	22 22 23 23 23 23 23 23 23 23 23 23 23 2
Lorsque l'appareil fonctionne avec une alimentation externe Circuit de charge MISE EN OEUVRE Fonction HOLD. Activation de la fonction HOLD Désactivation de la fonction HOLD. Enregistrement de données (REC) Activation d'enregistrement statique Utilisation de l'enregistrement statique Calibration (CAL). Démarrer une Calibration. Open Cal Short Cal/calibration en court-circuit. Paramètre primaire (PRI)	22 22 23 23 23 23 23 23 23 23 23 23 25 25 25 25 26 27
Lorsque l'appareil fonctionne avec une alimentation externe	22 22 23 23 23 23 23 23 23 23 23 23 23 2
Lorsque l'appareil fonctionne avec une alimentation externe	22 22 23 23 23 23 23 23 23 23 23 23 25 25 25 25 25 25 25 25 25 27 27
Lorsque l'appareil fonctionne avec une alimentation externe	22 22 23 23 23 23 23 23 23 23 23 23 23 2
Lorsque l'appareil fonctionne avec une alimentation externe	22 22 23 23 23 23 23 23 23 23 23 23 23 2
Lorsque l'appareil fonctionne avec une alimentation externe Circuit de charge MISE EN OEUVRE Fonction HOLD. Activation de la fonction HOLD Désactivation de la fonction HOLD. Enregistrement de données (REC) Activation d'enregistrement statique Utilisation de l'enregistrement statique Calibration (CAL). Démarrer une Calibration. Open Cal Short Cal/calibration en court-circuit. Paramètre primaire (PRI) Paramètre secondaire (SEC) Auto Detect Mode (AUTO): MODE AUTOMATIQUE Activer le mode auto Désactiver le mode auto Fréquence de Test (FREQ).	22 22 23 23 23 23 23 23 23 23 23 23 23 2
Lorsque l'appareil fonctionne avec une alimentation externe Circuit de charge MISE EN OEUVRE Fonction HOLD. Activation de la fonction HOLD Désactivation de la fonction HOLD. Enregistrement de données (REC) Activation d'enregistrement statique. Utilisation de l'enregistrement statique Calibration (CAL). Démarrer une Calibration Open Cal. Short Cal/calibration en court-circuit. Paramètre primaire (PRI) Paramètre secondaire (SEC) Auto Detect Mode (AUTO): MODE AUTOMATIQUE Activer le mode auto. Fréquence de Test (FREQ). Sélectionner la fréquence	22 22 23 23 23 23 23 23 23 23 23 23 23 2

Cadence de Mesure (RATE)	29
Choix du mode de mesure série ou parallèle	29
Paramètres par défaut	
Sélection du mode de mesure	
Tolérance (TOL)	29
Gamme de Tolérance	
Réglage du mode de tolérance	
Désactiver le mode tolérance	
Menu "Utilitaire" (UTIL)	
Utilisation du menu utilitaire	
Configuration et paramètres	
Sortir du menu Utility	
USB	
Détection automatique de fusible	
GUIDE DE PRISE EN MAIN RAPIDE	
Mesure d'inductance	
Mesure de capacité	41
Mesure de résistance	42
Mesure de la résistance en courant continu (DCR)	43
Mesure d'impédance	45
COMMUNICATION A DISTANCE	
Connexion de l'appareil à l'ordinateur	46
Configuration USB (COM virtuel)	47
Fonction USB	47
Mode de contrôle à distance	
Mode de transfert automatique	
Protocoles des commandes	48
Aperçu du type de commandes et du format	
Format des commandes générales	
Format des commandes SCPI et Format de la requête	
Caractère de terminaison	
Message de réponse	
Types de données	
Commandes de références	
Commandes SCPI	
Codes d'erreurs	
INFORMATIONS SUPPLEMENTAIRES	56
Choix de la fréquence du test	56
Capacité	
Inductance	
Choix du mode en série ou en parallèle	
Capacitance	
Inductance	
Problèmes de précision	

Dans certains cas particuliers, des erreurs peuvent se produire dans la mesure de composants capacitifs, indu	ctifs et résistifs. 57
Capacitance	57
Inductance	57
Résistance	58
Borne de garde	58
SPECIFICATIONS	58
Spécifications générales	59
Spécifications de précision	60
Conditions de test:	60
Capacitance(C) et Dissipation (D)	62
Impédance (Z) and Angle de Phase ($ heta$)	63
DCR	64
MAINTENANCE	66
Réparation	66
Nettoyage	66

INTRODUCTION

Le pont RLC 880 a été conçu pour mesurer l'inductance, la capacité et la résistance des composants. Ce pont RLC est doté de 40.000 points de mesure affiche une mesure principale et une mesure secondaire avec une résolution de 0.0001 et une précision jusqu'à 0.1%.

L'appareil effectue des mesures directes et précises en mode en parallèle ou en mode en série et permet le choix de la fréquence de test, des niveaux de tensions et des mesures à 4 conducteurs.

Le changement de gammes automatiques affiche rapidement les résultats des mesures et choisit automatiquement les paramètres en fonction de la propriété des composants.

Les touches situées sur le panneau avant permettent un accès direct aux fonctions : (hold) maintient, maximum, minimum et moyenne, mode relatif, mode tolérance permettant le tri des composants, la fréquence et la sélection LCR.

Les données des tests peuvent être transférées vers un ordinateur via un câble mini USB, utile pour les applications qui nécessitent l'enregistrement et le traitement des données.

CONTENU DE L'EMBALLAGE

Votre appareil a été inspecté avec précaution au niveau mécanique et électrique avant son expédition. Après avoir sorti tous les équipements de l'emballage, vérifiez qu'aucune trace de dommage ne soit présente et qui pourrait avoir eu lieu durant le transport. Merci de notifier à l'agent transporteur la présence d'un dommage. Gardez l'emballage d'origine pour une possible réexpédition. Voici les équipements inclus :

- Un pont RLC 880
- Une insertion de démarrage rapide
- Un câble pour l'interface USB (mini USB)
- Un jeu de cordon de test banana/croco
- Plaque de court-circuit TLBSB
- Cordon de test Kelvin à 4 bornes blindées TL8KC1
- Cordon de test TL LCR SMD pour composants CMS
- Chargeur de batterie
- Batterie rechargeable 9V Ni-MH (installée dans l'appareil)

Merci de vérifier que tous les équipements sont inclus dans l'emballage. Si un des composants venait à manquer, contactez immédiatement votre fournisseur.

APERCU DU PANNEAU AVANT

Schéma 1 – aperçu du panneau avant

Description du panneau avant

- 1. Ecran LCD
- 2. Communication USB / *touche de rétro-éclairage
- 3. Interrupteur marche/arrêt
- 4. Fréquence et enregistrement de la sélection du mode
- 5. Mode d'affichage secondaire $(D/Q/\theta/ESR, etc.)/$ niveau de test
- 6. Mode d'affichage primaire (L/C/R/Z/DCR, etc.)/ sélection RLC automatique
- 7. Cadence de mesure/ Choix du mode (série, parallèle)
- 8. Port mini USB (pour le contrôle à distance)
- 9. Prises de test à 5-bornes pour mesure directe sur les composants
- 10. Mode HOLD/ Menu UTILITY
- 11. Mode Tolérance/ touche de sélection flèche du haut
- 12. Touche pour calibration circuit-ouvert/court-circuit
- 13. Entrée de l'adaptateur secteur 12V (à utiliser avec un adaptateur secteur externe)*
- 14. Bornes d'entrées à utiliser avec les câbles bananes-pinces crocodiles)

Remarque: utiliser exclusivement l'adaptateur secteur fourni. Une utilisation avec un adaptateur inapproprié peut endommager l'appareil. Utilisez l'adaptateur secteur uniquement si une batterie rechargeable est insérée ou lorsqu'il n'y a pas de batterie.

ATTENTION : avant de connecter un adaptateur secteur externe, vérifiez le compartiment de la batterie à l'arrière de l'appareil. Si une batterie est installée, assurez-vous que la polarité corresponde au (+) et (-) des étiquettes, comme indiqué dans le compartiment de la batterie. Se référer à la section « Installer la batterie » pour plus de détails. NE CONNECTEZ JAMAIS un adaptateur externe lorsque la batterie n'est pas installée correctement ou qui est du mauvais type, sinon des dommages seront infligés à l'appareil ou à la batterie et cela annulera votre garantie.

Touches du panneau avant

A l'exception de l'interrupteur marche/arrêt, toutes les touches ont une couleur spécifique. Elles sont toutes colorées en blanc, bleu ou jaune. Chaque couleur à une signification, comme expliqué ci-dessous :

White—La fonction primaire, ces fonctions sont réglées ou configurées en appuyant sur la touche.

Blue—La fonction secondaire, cette fonction est réglée ou configurée si cette touche est maintenue appuyée pendant 2 secondes.

-La fonction utilitaire (utility), cette fonction est réglée ou configurée si cette touche ^{ll}est maintenue appuyée pendant quelques secondes puis relâchée. Se reporter à la

section « Menu Utility » pour plus de détails.

REMARQUE: Dans les instructions sur le fonctionnement des touches, nous utilisons le nom de la touche pour exprimer l'opération réalisée par cette touche mais sans différencier le type de touche. La fonction secondaire de chaque touche peut être accessible en appuyant un long moment sur la touche, jusqu'à ce qu'un signal sonore se fasse entendre. Dans ce cas, la fonction secondaire est activée.

VUE D'ENSEMBLE DU LCD

LCD Display Descriptions

- 1. MAX Indicateur de lecture maximum dans le mode « record »
- 2. LDCRZ Unité de l'affichage principal
- 3. AVG indicateur de lecture moyenne dans le mode « record »
- 4. MIN indicateur de lecture minimum dans le mode "record"
- 5. AUTO Indicateur du choix RLC automatique
- 6. θ . Indicateur de l'angle de phase pour l'affichage secondaire
- 7. D Indicateur du facteur de dissipation
- 8. Q Indicateur de facteur qualité
- 9. BBBB Affichage des paramètres secondaires
- 10. •))) Indicateur de tonalité pour le mode tolérance
- 11. deg Indicateur en unités (θ) de l'angle de phase
- 12. Ω Indicateur de l'unité de l'ESR (ohm)
- 13. % Indicateur du pourcentage de tolérance
- 14. kHz Indicateur de l'unité de fréquence
- 15. PAL Indicateur du mode parallèle
- 16. SER Indicateur du mode série
- 17. mH Indicateur d'unité d'inductance
- 18. pF Indicateur d'unités de capacité
- 19. MkΩ Indicateur d'unité de résistance/ d'impédance
- 20. **RMT** Indicateur du mode contrôle à distance
- 21. $\cdot \Box \cdot \Box \cdot \Box \cdot \Box \cdot \Box \cdot \Box Affichage principal$
- 22. ESR Indicateur pour le mode en série pour les paramètres secondaires
- 23. DH Indicateur de maintien des données
- 24. SLOW Indicateur de la cadence de mesure
- 25. 2105% indicateur de limite dans le mode tolérance

- 26. 💷 indicateur de batterie faible
- 27. @OFF indicateur d'arrêt automatique
- 28. 1V 0.6V 0.3V- Display test level/ affichage du niveau de test
- 29. TOL indicateur du mode tolérance
- 30. FAST- indicateur de cadence de mesure Rapide/Lent

Indicateurs spéciaux

SHrEIndique des bornes en court-circuitDPEIIIndique des bornes en circuit ouvertErrMessage d'erreurERLIndique le mode de calibrationFUSEIndique que les fusibles sont coupés ou endommagésEIIErreur du convertisseur ADEII2Erreur du convertisseur AD

Les entrées de mesure

Le modèle 880 est conçu avec deux types d'entrée: un groupe à 3 bornes bananes, très pratique et un groupe à 5 bornes pour une plus grande précision.

Schéma 3 – Ports de test

Les prises bananes standards permettent de connecter les câbles banane –pinces crocodiles. Cette configuration a une précision de test plus faible en comparaison avec le groupe à 5 bornes. Les connexions doivent être aussi courtes que possible.

Lors d'une utilisation de sondes de test externes, le pont RLC 880 est conçu avec un groupe d'entrée et des montages de test qui fournissent une connexion à 4 fils avec un blindage afin d'accroître la précision de la mesure.

ALIMENTER L'APPAREIL

Avant de commencer à manipuler l'appareil, une source d'alimentation est nécessaire pour qu'il fonctionne. Il y a 2 méthodes pour alimenter l'appareil: la pile et l'alimentation externe.

Installation de la pile

Le pont RLC 880 peut fonctionner avec une pile ce qui permet à cet appareil d'être portable.

Le pont RLC fonctionne avec une pile standard 9V (NEDA 1604, IEC6F22 carbone zinc ou pile alcaline) ou une pile rechargeable Ni-MH. Pour installer la pile:

1. Retournez l'appareil. Ouvrir le couvercle arrière et repérer la vis qui maintient le couvercle du compartiment pile comme indiqué sur le schéma 4. Utilisez un tournevis pour enlever le couvercle.

Schéma 4 – Couvercle arrière

 Insérez une pile 9V dans le compartiment. Repérez les bornes positives (+) et négatives
(-) comme indiqué à l'intérieur du compartiment de la batterie (voir schéma 5). Assurezvous de respecter la polarité.

Schéma 5 – Compartiment à pile

- 3. Placez le couvercle du compartiment à piles de manière à le faire glisser dans le boîtier du couvercle. Revissez la vis du couvercle à l'aide d'un tournevis.
- 4. Appuyez sur la touche pendant 2 secondes pour mettre en marche l'appareil.

Connexion de l'alimentation externe

Le 880 peut également être alimenté par un adaptateur externe. Le modèle 880 est livré avec un adaptateur secteur.

Remarque : pour l'alimentation externe, utilisez un adaptateur 12V DC, 150 mA, équipé d'une prise jack 4 mm.

ATTENTION : L'utilisation d'un adaptateur approprié

Pour connecter l'adaptateur, suivre les étapes suivantes :

 Si la pile est installée, merci de vous assurer que la polarité de la pile corresponde à la polarité indiquée sur l'étiquette dans le compartiment à pile. Si ce n'est pas le cas, veuillez enlever la pile et la remettre dans le bon sens. Si la pile n'est pas installée, référez-vous directement à la prochaine étape.

ATTENTION: <u>NE JAMAIS</u> connecter un adaptateur externe lorsque :

- La pile à l'intérieur de l'appareil n'est pas rechargeable. Vous risquez d'endommager la batterie qui peut éclater, ou de provoquer un incendie.
- Une pile n'est pas correctement installée (en particulier si sa polarité est inverse). Vous risquez d'endommager l'appareil et cela annulera votre garantie.
- Connectez l'adaptateur sur le côté droit de l'appareil. Référez-vous au schéma 6 cidessous.
- 3. Puis, branchez la prise de l'adaptateur dans une prise électrique.
- 4. Maintenez appuyé la touche pendant 2 secondes pour mettre en marche l'appareil.

Schéma 6 – Connexion d'un adaptateur au pont RLC

Remarque : le mesureur peut fonctionner avec une prise rechargeable installée dans l'appareil même si un adaptateur est branché (tant que la pile est insérée correctement en respectant la polarité). Dans ce cas, l'appareil va automatiquement fonctionner en utilisant l'énergie de l'adaptateur plutôt que celle de la pile, afin de conserver son autonomie.

Indicateur de pile faible

Le pont RLC possède un indicateur de pile faible pour que l'utilisateur sache quand changer la pile. Lorsque sur l'écran, l'indicateur $\boxed{+-}$ commence à clignoter, le niveau de charge de la pile est en dessous du niveau normal de fonctionnement. Dans ce cas, la précision du pont sera diminuée. Il est recommandé de remplacer la pile dans les plus brefs délais pour continuer à utiliser l'appareil. Pour plus de détails, reportez-vous à la section « Installation de la pile ».

Rétro-éclairage de l'écran.

Le pont RLC 880 est doté d'un écran rétroéclairé qui permet à l'utilisateur de l'utiliser dans un environnement sombre.

Pour mettre en marche le rétro-éclairage, maintenez le bouton pendant 2 secondes. Le rétro-éclairage se met en marche et allume l'écran LCD.

Pour éteindre le rétro-éclairage, maintenez appuyé le bouton a nouveau pendant 2 secondes. Le rétro-éclairage s'éteint et retourne à l'affichage normal.

Lorsque l'appareil fonctionne sur pile

Quand l'appareil est alimenté par une pile 9V, le rétro-éclairage s'allume en appuyant pendant 2 secondes sur . Au maximum, l'écran reste allumé pendant 30 secondes puis le rétroéclairage s'éteint automatiquement pour préserver l'autonomie.

Lorsque l'appareil fonctionne avec une alimentation externe

Quand l'appareil est alimenté par un adaptateur externe, le rétro-éclairage s'allume en appuyant 2 secondes sur le bouton. L'écran reste éclairé en continu jusqu'à ce que l'utilisateur maintienne appuyé le bouton pendant à nouveau 2 secondes.

Remarque : si une pile rechargeable est installée et que l'adaptateur est branché simultanément, débrancher l'adaptateur éteindra le rétro-éclairage au bout de 30 secondes.

Circuit de charge

Quand l'adaptateur externe est branché, le mode d'alimentation change automatiquement et charge la pile rechargeable de l'appareil.

Le cycle de charge est d'environ 160 minutes et le courant de charge est approximativement de 120mA. Si une pile est complètement rechargée, alors l'appareil arrêtera de la charger.

ATTENTION : NE CONNECTEZ PAS l'appareil à une alimentation externe quand la pile installée n'est pas une pile rechargeable. Vous risquez de faire éclater la batterie et de déclencher un incendie.

E Indique que la pile est faible si l'appareil est alimenté par celle-ci. Ce même symbole est utilisé pour avertir l'utilisateur que la pile est en charge une fois l'appareil branché à un adaptateur.

MISE EN OEUVRE

ATTENTION: si le composant à mesurer est un condensateur, assurez-vous que le condensateur soit complètement déchargé avant de l'insérer dans une prise d'entrée ou dans une borne. Pour les gros condensateurs, le temps de décharge est plus long. En insérant un condensateur chargé ou partiellement chargé dans la prise d'entrée ou dans les bornes du pont RLC, il peut se produire un choc électrique et l'appareil peut être endommagé, voire inutilisable.

Fonction HOLD

La fonction HOLD permet à l'utilisateur de figer l'affichage de l'écran lorsque la touche est pressée, les valeurs mesurées restent jusqu'à ce que la fonction HOLD soit désactivée.

Activation de la fonction HOLD

Pour utiliser la fonction HOLD, appuyez une fois sur . L'indicateur "DH" s'affiche à l'écran lorsque la fonction est active.

Désactivation de la fonction HOLD

Pour désactiver la fonction HOLD, appuyez encore sur . L'indicateur **CH** disparait de l'écran et le pont RLC reste en mode de fonctionnement normal.

Remarque : en changeant la fonction principale, la secondaire ou la fréquence des tests, fonction HOLD se désactive automatiquement.

Enregistrement de données (REC)

Si la stabilité des mesures des composants sous test est faible et que les données fluctuent dans une gamme, l'enregistrement aide à la lecture des données.

Ce mode est utilisé pour enregistrer les valeurs maximales, minimales et moyennes.

Activation d'enregistrement statique

Maintenez appuyé la touche pendant 2 secondes pour entrer dans le mode d'enregistrement statique. L'écran doit indiquer: **"MAX AVG MIN**" simultanément. Cela indique que le pont RLC est en mode d'enregistrement statique et l'enregistrement s'effectue immédiatement.

Utilisation de l'enregistrement statique

4 modes peuvent être utilisés pour l'enregistrement statique. Appuyez sur le bouton (Dans le mode d'enregistrement statique, FREQ est désactivée), les modes changent et répétés dans cet ordre :

→Mode d'enregistrement → Mode Maximum → Mode Minimum→ Mode Moyenne

Mode d'enregistrement

Il s'agit du mode par défaut lorsque vous activez pour la première fois l'enregistrement statique. Dans ce mode, l'écran affiche l'indicateur "**MAX AVG MIN**". Dans une gamme relativement stable des données de test, un bip sonore peut se déclencher une fois que l'enregistrement a été stocké.

REMARQUE : quand l'amplitude de fluctuation des données est supérieure à 1%, le mode d'enregistrement se réactualise.

<u>Mode maximum</u>

Appuyez sur le bouton jusqu'à ce que l'indicateur « **MAX** » soit affiché sur l'écran. Il indique que la valeur de l'affichage principal représente la valeur maximale enregistrée.

<u>Mode minimum</u>

Appuyez sur le bouton jusqu'à ce que l'indicateur « **MIN** » soit affiché sur l'écran. ". Il indique que la valeur de l'affichage principal représente la valeur minimale enregistrée.

<u>Mode moyenne</u>

Appuyez sur le bouton jusqu'à ce que l'indicateur « AVG » soit affiché sur l'écran. Il indique que la valeur de l'affichage principal représente la valeur moyenne enregistrée.

Désactivation du mode d'enregistrement statique

Pour sortir de ce mode, appuyez sur le bouton pendant 2 secondes. L'indicateur « MAX AVG MIN », « MAX », « MIN » ou « AVG » apparaît sur l'écran.

Remarque : le changement de type des paramètres de test désactivera automatiquement le mode d'enregistrement statique.

Calibration (CAL)

Ce mode est utilisé lorsque l'utilisateur veut faire un zéro sur l'appareil ou avoir une valeur relative par rapport à une valeur de référence.

Par exemple, si les câbles de test sont utilisés pour des mesures, l'utilisateur peut vouloir faire un ajustage avec les câbles de test utilisés afin de ne pas prendre en compte ces câbles dans les mesures.

Il y a deux fonctions dans le mode CAL :

- **Open Cal (calibration circuit-ouvert)** réduit les effets des résistances des cordons de test.
- Short Cal (calibration en court-circuit) minimise l'influence des capacités distribuées et des résistances sur les éléments haute impédance qui sont testés.

Démarrer une Calibration

Pour des raisons pratiques, OPEN CAL et SHORT CAL partagent une seule et même touche. En appuyant sur la touche (), l'appareil va automatiquement choisir soit Open Cal, soit Close Cal.

Open Cal

D'abord, sélectionnez la fréquence pour la Calibration et ne branchez rien dans les bornes de

test. Entrez dans le mode CAL en appuyant sur le bouton et quelques instants plus tard, l'indicateur OPEN s'affiche sur l'écran secondaire après l'estimation des mesures automatiques.

Si l'utilisateur décide d'exécuter Open Cal, un autre appui sur 🖤 est nécessaire.

REMARQUE : L'indicateur « --- » sur l'écran secondaire indique que la borne de test n'est pas en circuit ouvert et de ce fait, le mode Cal ne peut pas être exécuté.

Schéma 7 - Open Cal

Short Cal/calibration en court-circuit

Choisissez d'abord la fréquence de test pour Cal et insérer un court-circuit dans les bornes d'entrée. Si les pinces de test SMD ou les cordons de test sont utilisées, un court-circuit dans les bornes d'entrée doit être connecté aux extrémités des câbles afin de prendre en compte les propriétés des câbles. Entrez dans le mode Cal en appuyant sur et quelques instants plus tard, l'indicateur SHrt apparaît sur l'écran secondaire après l'estimation des mesures automatiques.

REMARQUE : l'indicateur "----" sur l'écran secondaire indique que le terminal n'est pas en courtcircuit et de ce fait, la calibration en court-circuit ne peut pas être éxecutée.

Schéma 8 – Calibration en cours circuit

Notes:

- 1. Si la fréquence de test est modifiée, la calibration doit être effectuée à nouveau avant de faire des mesures précises. Une fois que la calibration est effectuée dans une fréquence de test choisie, les données de calibration restent jusqu'à l'arrêt de l'appareil.
- 2. Si la calibration circuit ouvert ou en court-circuit n'est pas associée avec la fonction de mesure, alors les modifications de fonction ne nécessitent pas une nouvelle calibration.
- 3. Une nouvelle calibration peut être nécessaire en fonction de nombreux facteurs comme par exemple une utilisation prolongée, un changement d'environnement et des changements des types de cordons de mesure.

4.

Remarque : pour obtenir des résultats de mesure optimaux, la calibration en circuit ouvert et la calibration en court-circuit doivent être réalisées. Il est fortement recommandé de calibrer des valeurs extrêmement hautes ou extrêmement basses pour L, C, R et Z avant de faire des mesures de précision.

Paramètre primaire (PRI)

L'écran principal du pont RLD indique les valeurs mesurées sous 4 modes différents. Ces modes sont : L (inductance), C (capacité), R (résistance) et Z (impédance).

Pour sélectionner l'un de ces 4 modes de mesure, appuyez sur le bouton. Les modes défilent à chaque fois qu'une pression est effectuée sur le bouton. Sur l'écran, les indicateurs « L », « C », « R », ou « Z ») sont affichés pour indiquer quel mode est activé.

Remarque : après un changement des paramètres primaires, l'écran secondaire indique la fréquence sélectionnée. Il n'y a pas d'affichage de paramètres secondaires en mode DCR. S'il s'avère nécessaire d'afficher les paramètres secondaires, appuyez sur le bouton secondaire.

Paramètre secondaire (SEC)

L'écran secondaire du pont RLC affiche les valeurs mesurées des 4 paramètres, et fournit des informations supplémentaires sur les composants en cours de test. Ces paramètres sont : D (Facteur de dissipation), Q (Facteur qualité), θ (Angle de Phase) et ESR (Résistance série équivalente).

Pour sélectionner ces paramètres de mesure, appuyez sur le bouton. Les paramètres pour la mesure défilent à chaque pression sur le bouton. Sur l'écran, les indicateurs "**D**", "**Q**", "**Q**", "**θ**" ou "**ESR**" sont affichés pour indiquer quel mode secondaire est activé.

Auto Detect Mode (AUTO): MODE AUTOMATIQUE

Le mode automatique sélectionne les paramètres primaires correspondants ainsi que les paramètres secondaires et le type de mesure série/parallèle de L,C,R. la sélection est effectuée en évaluant la propriété de l'impédance des composants en fonction des résultats de test. Ce mode est pratique pour les mesures de composants mixtes ou inconnus.

Activer le mode automatique

Appuyez brièvement sur le bouton AUTO pour activer le mode automatique du pont RLC. L'indicateur «Auto» sur l'écran LCD indique le que mode automatique est activé. Dans le mode automatique RLC, chaque paramètre primaire a un paramètre secondaire qui lui est associé, comme indiqué ci-dessous :

Paramètre Primaire	Paramètre Secondaire
Capacité(C)	Dissipation (D)

Inductance (L)	Facteur Qualité (Q)
Résistance (R)	Angle de Phase (θ)
	. . ,

Table 1- Mode Auto RLC

Dans le mode auto, le mode série ou parallèle équivalent est sélectionné en accord avec la magnitude de l'impédance. Le mode parallèle est sélectionné à haute impédance et le mode série à faible impédance.

Désactiver le mode auto

Appuyer une nouvelle fois longuement sur le bouton pour désactiver le mode auto. L'appareil ne continuera pas à changer le mode primaire et le mode secondaire, le mode équivalent série/parallèle et le mode de fréquence. L'indicateur « AUTO » disparaît de l'écran quand le mode RLC automatique est désactivé.

Fréquence de Test (FREQ)

Le pont RLC 880 utilise un signal AC pour tester et mesurer les composants aux bornes d'entrées Avec cette méthode de mesure, une fréquence de test doit être sélectionnée. La fréquence de test peut affecter la précision des résultats en fonction de la fréquence sélectionnée et du type et de la valeur du composant mesuré ou en cours de test. Pour plus de détails sur la fréquence de test optimale à choisir pour effectuer des mesures, référez-vous à la section **"INFORMATIONS SUPPLEMENTAIRES".**

Sélectionner la fréquence

Pour sélectionner ou modifier la fréquence de test appuyer sur le bouton une fois. A chaque pression, la fréquence de test sera indiquée sur l'écran secondaire de l'appareil. Cette fréquence sera affiché jusqu'à ce qu'une fonction différente pour l'écran secondaire soit sélectionnée.

Les fréquences de test pouvant être choisies pour le **880** sont : **100 Hz, 120 Hz, 1 kHz, 10 kHz, et 100 kHz.**

Tension de Test (LEV)

Le 880 RLC portatif applique un signal alternatif au dispositif en cours de test. Le niveau de tension de test est l'amplitude du signal AC. Certains composants à haute-sensibilité peuvent afficher des résultats de test différents lors de l'utilisation de niveaux de tensions différents. C'est pourquoi un niveau de test approprié doit être choisi avant de démarrer la mesure.

Appuyez sur le bouton pendant 2 secondes pour accéder aux options du niveau de tension. A chaque fois que le bouton est pressé, le 880 va changer de niveau. Les niveaux disponibles sont : **0.6V, 0.3V et 1V.**

Cadence de Mesure (RATE)

2 cadences de mesure peuvent être sélectionnées pour cet appareil : rapide et lente. La cadence de la mesure rapide est d'environ 4 à 5 fois/secondes et la mesure lente est d'environ 1.5fois/secondes. La stabilité de la mesure lente est bien meilleure que celle de la mesure rapide.

Les cadences rapides et lentes peuvent directement être changées en appuyant sur le bouton

L'indicateur « FAST » est affiché sur l'écran lors de la cadence rapide et l'indicateur « SLOW » est affiché sur l'écran lors de la cadence lente.

Choix du mode de mesure série ou parallèle

Le pont RLC offre la possibilité de sélectionner le mode de mesure série ou parallèle. En fonction du mode sélectionné, la méthode utilisée pour mesurer le composant sera différente. En outre, un mode de mesure peut apporter plus de précision que l'autre mode de mesure en fonction du type de composant et de la valeur du composant. Pour plus de détails, référez-vous à la section **« INFORMATIONS SUPPLEMENTAIRES ».**

Paramètres par défaut

Pour les mesures de **Capacité** et de **Résistance**, le mode de mesure par défaut est le <u>mode</u> <u>parallèle</u>.

Pour les mesures d'inductance, le mode de mesure par défaut est le mode série.

Sélection du mode de mesure

Le mode de mesure est affiché par les indicateurs **"SER"** ou **"PAR"** sur l'écran LCD. **« SER »** signifie que l'appareil utilise le mode série. Pour basculer entre les deux modes, appuyez et maintenez le bouton enfoncé pendant 2 secondes. Les indicateurs sur l'écran vont basculer entre **« SER »** et **« PAR »**.

Tolérance (TOL)

Le mode tolérance est spécifiquement utilisé pour le tri des composants. Les utilisateurs qui ont besoin de tester et de trier parmi une grande quantité de composants trouveront cette fonction très utile.

Gamme de Tolérance

La fonction tolérance est configurée en pourcentage, c'est-à-dire qu'un pourcentage est utilisé pour définir si une valeur mesurée est dans ou en dehors de la tolérance.

Dans le mode tolérance, les choix de la tolérance sont : 1%, 5%, 10%, 20%. Les données indiquées sur l'écran principal sont enregistrées en tant que valeur nominale. L'écran secondaire affiche la gamme de tolérance en %.

Valeur affichée en pourcentage: =

100 * (Mx - Nom)/Nom%

Où, **Mx**: Affichage des paramètres primaires; **Nom**: valeur nominale enregistrée.

Réglage du mode de tolérance

 Sélectionnez le mode de mesure principal basé sur le type de composants qui doit être mesuré. Cela peut être fait en appuyant sur pour configurer le mode de mesure.

Remarque : Assurez-vous de choisir le bon mode de mesure, étant donné que le mode tolérance ne peut être activé que si le bon mode est choisi. Par exemple, si le composant est un condensateur, assurez-vous de sélectionner «C» pour condensateur. Si ce n'est pas le cas, le mode tolérance ne sera pas activé lorsque vous effectuerez les étapes suivantes :

- 2. Configurez la fréquence de test et le mode en série/en parallèle.
- 3. Exécutez l'opération de calibration (CAL) si nécessaire.
- 4. Insérez un composant que vous savez « bon » qui sera utilisé pour les tests par rapport aux autres composants.
- 5. Ce composant sera utilisé comme valeur de référence pour la valeur « nominale » (Voir **Schéma 9** pour illustration)

Remarque : le mode Tolérance ne peut pas être activé sauf si le pont RLC détecte un composant connecté aux bornes d'entrée.

Schéma 9 – Insertion des composants dans l'entrée

6. Une fois la lecture de la mesure affichée, appuyez sur pour enregistrer la lecture en tant que valeur standard ou valeur de référence. Alors, l'indicateur « **TOL** » est affiché à l'écran, ce qui indique que le mode tolérance est activé.

Remarque : toutes les valeurs qui apparaissent sur l'écran LCD, comme par exemple DH (maintien des données) ou MAX/MIN/AVG, peuvent également être utilisées comme une valeur "standard" ou une valeur de référence pour le tri des composants.

- Pour choisir la gamme de tolérance, appuyez sur . A chaque pression sur la touche, le pont RLC varie selon le pourcentage de tolérance de la gamme dans cet ordre: 1%, 5%, 10%, 20%. Le composant qui sera testé sera vérifié avec la tolérance sélectionnée (comme configuré dans l'étape 5).
- 8. Après quelques secondes, un signal sonore est émis.

UN SEUL "bip" signifie que le composant est <u>dans la tolérance.</u> **TROIS** "bips" signifient que le composant est <u>en dehors de la tolérance.</u>

Désactiver le mode tolérance

Pour désactiver ou quitter le mode tolérance, maintenez appuyée la touche pendant 2 secondes. L'indicateur «TOL» ou les indicateurs de pourcentage "1%", "5%", "10%", ou "20%" disparaissent de l'écran.

Remarque : Lors du changement de la fonction principale, la fonction secondaire ou les fréquences de test, le mode tolérance se désactive automatiquement.

Menu

Menu "Utilitaire" (UTIL)

Le pont RLC est doté d'un menu utilitaire qui vous permet de configurer les préférences de

l'utilisateur et les réglages. Les touches utilisées ce menu sont de couleur jaune: 📖 , 💷 et 🕒

Utilisation du menu utilitaire

Maintenez la touche pendant 2 secondes ou jusqu'à ce que l'écran principal affiche « **dCdLy** ». Cela indique que le pont RLC est dans le menu utilitaire.

Configuration et paramètres

Il y a 4 options de menu différentes et des paramètres configurables sous chaque option. Voici la table de ces options et paramètres.

Options du menu	Réglages/Paramètres
dCdly	DCR délai du
	déclencheur
bEEP	ON / OFF
AoFF	5 / 15 / 30 / 60 / OFF
PuP	PrE / Set
dEF	yES / NO
bAtt	Tension de la pile

Table 2 – Options du menu utilitaire et paramètres

Les 6 options du menu permettent à l'utilisateur de contrôler ou de vérifier les options suivantes :

- Délai du déclencheur DCR (dCdLy: DCR delay)
- Définir la tonalité du beep (bEEP: beep sound)
- Régler l'arrêt automatique: (AoFF: auto power off)
- Etat à la mise sous tension: (PuP: power-up state)

- Remise à zéro de l'appareil avec réglages par défaut : (dEF: default settings)
- Indiquer le niveau de la pile: (bAtt: battery voltage)

Par défaut, la première option après avoir accédé au menu utilitaire est "dCdLy". L'écran principal indique les options du menu, et l'écran secondaire indique les paramètres actifs ou les paramètres configurés pour l'option sélectionnée. Pour changer les réglages ou les paramètres, utilisez les touches et . Pour changer ou sélectionner une option de menu différente, appuyez sur une fois. Pour chaque appui sur la touche , le pont RLC va passer sur chaque option de menu et répéter l'opération dans cet ordre :

dCdly→bEEP →AoFF → PuP → dEF →bAtt

Remarque : les réglages et les paramètres sont temporairement "sauvegardés" lorsque vous appuyez sur pour choisir une option de menu différente. Pour sauvegarder tous les réglages de façon permanente, sortez du menu. A l'exception des réglages "**bEEP**" et"**AoFF**", les modifications sont temporairement sauvegardées même si vous quittez le menu sans effectuer une sauvegarde (Voir "sortir du menu Utility" pour plus de détails).

Régler le délai du déclencheur DCR (dCdLy)

Le menu "dCdLy" est utilisé pour régler le délai du déclencheur dans une gamme de 0000 à 9999 ms.

Utilisez les touches et pour incrémenter ou décrémenter le temps par incrément de 1. En appuyant longtemps sur et et le temps, les flèches peuvent faire bouger le curseur vers la gauche ou la droite. Le réglage est actif une fois modifié.

REMARQUE : Quand le paramètre n'est pas 0000, plus le temps est long, plus la cadence de mesure du délai du DCR est lente. Il est recommandé de régler le temps sur 0000.

Paramètre par défaut : 0000

Réglage de la tonalité du bip (bEEP)

L'option de menu **"bEEP**" permet aux utilisateurs d'activer ou de désactiver la tonalité du bip pour chaque touche appuyée. **Remarque** : cette option désactive seulement les sons pour chaque touche pressée. Elle ne désactive pas la tonalité pour « **L'enregistrement statique** » et pour le mode « **tolérance** », ainsi que pour l'avertissement de « **l'**arrêt **automatique** »

Pour <u>VALIDER</u> le bip, appuyez soit sur la touche soit sur la touche jusqu'à ce que l'écran secondaire affiche « **ON** ».

Pour **INHIBER** le bip, appuyez soit sur la touche soit sur les curseurs jusqu'à ce que l'écran secondaire affiche **« OFF »**

Paramètre par défaut: ON

Réglage de l'arrêt automatique (AoFF)

L'option du menu "**AoFF**" permet à l'utilisateur de régler le minuteur d'arrêt automatique. Ce minuteur est toujours actif. Il est remis à zéro à chaque fois que vous pressez un bouton ou qu'une action se produit. Si le pont RLC est laissé inutilisé, le minuteur compte jusqu'à ce que le temps programmé soit écoulé. Ce point est particulièrement important si l'utilisateur veut préserver la durée de vie de la pile ou utiliser le pont RLC de manière continue et sans interruptions.

Remarque: quand le minuteur atteint le temps configuré, le pont RLC émet un « bip » de manière continue pendant 10 secondes avant de s'éteindre automatiquement. Pour arrêter le « bip », appuyez sur n'importe quelle touche pour reprendre le fonctionnement normal ou remettre le minuteur à zéro.

Les réglages du minuteur disponibles sont : 5 minutes, 15 minutes, 30 minutes, 60 minutes, et off.

Quand l'écran principal affiche "**AoFF**", appuyez sur we ou pour sélectionner le réglage du minuteur. Les réglages seront affichés sur l'écran secondaire comme représentés ci-

Ecran Secondaire	REPRESENTATION
5	5 minutes
15	15 minutes
30	30 minutes
60	60 minutes
OFF	Pas de minuteur.
	Arrêt manuel
	seulement

Table 3 – Options de l'arrêt automatique

Paramètres par défaut : 5 minutes

Quand l'option "arrêt automatique" est réglée sur l'une des configurations de la Table 3 audessus (sauf pour « OFF »), l'indicateur OFF s'affiche à l'écran et reste jusqu'à ce que vous quittiez le menu. Cela signifie que le minuteur a été réglé pour l'arrêt automatique. Pour régler

le minuteur, sélectionnez le nombre de minutes désirées et appuyez sur le bouton mendant 2 secondes.

Remarque : Lorsqu'un adaptateur externe (12VDC) est utilisé pour alimenter l'appareil, l'option d'arrêt automatique est désactivée automatiquement. Ceci est indiqué sur l'écran par l'indicateur **«@OFF**" qui disparait. Dans ce cas, l'appareil reste allumé en permanence.

L'appareil s'éteint alors manuellement en appuyant sur pendant 2 secondes.

Lorsque l'alimentation externe est enlevée, le pont RLC réactive automatiquement l'arrêt automatique et l'indicateur "**@OFF**" réapparait si une durée a été réglée dans l'option "**AoFF**" du menu utilitaire.

<u>Etat à la mise sous tension (PuP)</u>

L'option du menu "**PuP**" permet à l'utilisateur de configurer l'état de mise sous tension du pont RLC. Grâce à cette option, l'utilisateur peut restaurer les réglages sauvegardés dans la mémoire interne (EEPROM) lors de la mise sous tension.

Dans le menu utilitaire, lorsque l'affichage principal affiche "**PuP**", vous avez le choix entre 2 réglages affichés dans l'affichage secondaire. "**PrE**" et "**SEt**".

Réglage par défaut: PrE

Réglages enregistrés en mémoire

- Mode fonction principale (i.e. L/C/R)
- Mode fonction secondaire (i.e. D/Q)
- Fréquence de test
- Cadence de mesure
- Auto LCR
- Mode tolérance
- Valeur de référence pour le mode tolérance

Configurer et enregistrer l'état à la mise sous tension

Veuillez suivre la procédure suivante pour régler et stocker l'état de mise sous tension dans la mémoire interne.

 Avant d'entrer dans le menu utilitaire, veuillez configurer tous les réglages et paramètres pour l'état de mise sous tension. Pour cela, mettez en marche tous les modes et réglez les valeurs désirées. (seuls les réglages listés ci-dessus sont sauvegardés). Si le pont RLC fonctionne en mode utilitaire, quittez d'abord le menu et réglez les paramètres désirés pour pouvoir les rappeler à la mise sous tension. (*voir "sortir du menu utility" pour plus de détails*)

- 2. Une fois que les réglages sont configurés, entrez dans le menu utilitaire en restant appuyé sur le bouton pendant 2 secondes.
- 3. Faites défiler le menu jusqu'à apercevoir **"PuP**" sur l'affichage principal. L'affichage secondaire affiche **"PrE**".
- Afin de sauvegarder les réglages pour la mise sous tension du pont RLC dans la mémoire interne, appuyez soit sur soit sur pour changer les réglages, ainsi l'écran secondaire affiche « Set ».
- 5. Appuyez sur le bouton pour sélectionner l'option du menu suivante. Une fois que toutes les autres options sont configurées, sortez du menu utilitaire en restant appuyé sur pendant 2 secondes.
- Le pont RLC a sauvegardé tous les réglages dans la mémoire interne de l'appareil. La prochaine fois que le pont RLC est mis en marche, les paramètres enregistrés seront instaurés.

Remarque : le pont RLC permet la sauvegarde d'un ensemble de paramètres dans la mémoire. Vous devez donc utiliser la même procédure pour réécrire sur les réglages sauvegardés auparavant dans la mémoire.

Prévenir la réécriture sur des configurations sauvegardés

Dans le menu utilitaire, le paramètre par défaut de l'option « **PuP** » est toujours « **PrE** ». Cela signifie «réglage précédent». En gardant ce réglage, vous éviterez ainsi une réécriture des réglages de mise sous tension qui sont sauvegardés dans la mémoire. Donc, lorsque vous entrez dans le menu utilitaire, assurez-vous de ne pas changer «**PrE**» en «**Set**» afin d'éviter une réécriture des réglages, ce qui effacerait l'ancienne configuration.

Remise à zéro des réglages par défaut (dEF)

La dernière option du menu utilitaire vous permet de remettre à zéro le pont RLC pour retrouver les réglages par défaut. Lorsque l'affichage principal affiche "**dEF**", le secondaire affiche par défaut "**NO**". Le pont RLC met par défaut ce réglage sur "**NO**" afin d'éviter une remise à zéro accidentelle des réglages de l'appareil.

Réglage par défaut:No

Pour remettre les réglages par défaut, sélectionnez d'abord l'option du menu "**dEF**" en utilisant la touche pour parcourir le menu. Lorsque l'affichage principal affiche "**dEF**", appuyez soit sur ou sur pour changer les réglages pour que l'affichage secondaire affiche "**yES**". Jusqu'au moment de l'enregistrement et de la sortie du menu utilitaire, l'appareil est automatiquement réinitialisé à ses paramètres d'origine. Ci-dessous se trouve le tableau de tous les réglages qui seront être réinitialisés.

Réglages	Configuration par défaut
Fonction principale	C (capacité)
Fonction secondaire	Aucune (fréquence)
Fonction	Off
Automatique LCR	
Méthode équivalente	SER (séries)
Fréquence de mesure	1kHz
Niveau de mesure	0.6V
Vitesse de mesure	Lent (SLOW)
Mode tolérance	Off

Table 4 – Paramètres par défaut

Remarque : Dans le cas où l'option "**PuP**" est activée, "**SEt**" est sélectionné et "**dEF**" est réglé sur "**yES**", le réglage "**PuP**" est prioritaire sur le réglage "**dEF**". Cela signifie que l'appareil ne sera pas réglé sur la position réglage par défaut au moment de l'enregistrement et de la sortie du menu utilitaire. A la place, les réglages la mise sous tension sont sauvegardés jusqu'à la prochaine mise en marche de l'appareil.

Indicateur de batterie faible (bAtt)

When menu option changes to "bAtt", the secondary display will indicate battery voltage that is for reference instead of for operational function. Quand l'option du menu change pour afficher "bAtt", l'écran secondaire indique le niveau de la pile plutôt que pour la fonction ou la mesure en cours.

Sortir du menu Utility

Il y a 2 méthodes pour sortir du menu utilitaire. L'une sauvegarde tous les changements de réglages avant de quitter le menu, et l'autre quitte le menu sans sauvegarder les changements.

<u>Sauvegarder et quitter</u>

Pour sauvegarder tous les réglages de l'option du menu utilitaire, appuyez sur pendant 2 secondes. Après cela, le pont RLC quitte le menu et tous les réglages sont sauvegardés.

Quitter sans sauvegarder

Si l'utilisateur décide de quitter le menu utilitaire sans faire aucun changement ni aucune sauvegarde avec l'option "**PuP**" ou "**dEF**", il peut le faire en appuyant simplement sur n'importe quelle touche du panneau avant sauf (**PuP**), (**Cup**), (**Cup**) et (**PuP**). Veuillez noter que les paramètres changés sous l'option "**bEEP**" et "**AoFF**" restent réglés temporairement jusqu'à la prochaine mise en marche de l'appareil.

USB

La touche USB est utilisée pour le contrôle à distance. Reportez-vous à la section correspondante pour plus de détails.

Détection automatique de fusible

Le pont RLC possède un fusible interne qui protège les entrées. Lorsque le pont RLC détecte que le fusible de protection est coupé, l'indicateur "**FUSE**" apparait sur l'affichage principal (voir schéma 10 ci-dessous) et un bip se déclenche en continu. Dans ce cas, aucune des touches ne fonctionne et toutes les autres fonctions de l'appareil sont désactivées.

Schéma 10 – Affichage fusible coupé

Si l'écran affiche l'indication ci-dessus, vous devez remplacer le fusible. Arrêtez l'appareil en maintenant appuyé la touche pendant 2 secondes. Si le pont RLC ne s'éteint pas, enlevez adaptateur externe s'il est en fonction et/ou enlevez la pile de son compartiment. Veuillez ne pas effectuer de nouvelles opérations jusqu'à ce que le fusible soit remplacé. Contactez votre fournisseur en cas de problème.

GUIDE DE PRISE EN MAIN RAPIDE

ATTENTION

- Ne pas mesurer un condensateur qui ne soit pas complètement déchargé. Connecter un condensateur chargé ou partiellement chargé à l'entrée de la borne pourrait endommager l'appareil.
- Lorsque vous effectuez des mesures sur un circuit, le circuit doit être mis hors tension avant de connecter les fils de test.
- En cas d'utilisation dans un environnement poussiéreux, l'appareil doit être nettoyé régulièrement.
- Ne pas laisser l'appareil exposé trop longtemps et directement aux rayons du soleil.
- Avant de retirer le couvercle, assurez-vous que l'appareil ne soit branché à aucun circuit et qu'il soit bien éteint.

Remarque: Pour obtenir des précisions optimales pour les mesures L, C, et R avec des gammes maximales ou minimales, calibrez le pont RLC avant d'effectuer les tests. Voir la section *"INFORMATIONS SUPPLEMENTAIRES" pour plus de détails.*

Mesure d'inductance

- 1. Appuyez sur pendant une seconde pour mettre en marche le pont RLC.
- 2. Appuyez sur le bouton jusqu'à ce que "L" soit affiché sur l'écran pour sélectionner la mesure d'inductance.
- 3. Insérez une inductance soit dans les prises d'entrées ou utilisez les cordons équipés de pinces crocodiles et connectez les pinces au fils des composants comme illustré sur le schéma 11.
- 4. Appuyez sur le bouton jusqu'à ce que la fréquence de test désirée apparaisse sur l'écran.
- 5. Appuyez sur (IIII) pour sélectionner soit le facteur D, soit le facteur Q, soit l'angle θ , soit la mesure ESR pour l'écran secondaire.
- 6. Lisez les indications à l'écran pour connaitre les valeurs d'inductance mesurées ainsi que les valeurs sélectionnées sur l'affichage secondaire.

Schéma 11 – Mesures d'inductance

Mesure de capacité

AWARNING

Déchargez complètement le condensateur <u>AVANT</u> de l'insérer dans l'appareil. Dans le cas contraire, le pont RLC pourra<u>it ê</u>tre endommagé et cela pourrait causer un choc électrique.

- 1. Appuyez sur le bouton pendant une seconde pour mettre en marche l'appareil.
- 2. Appuyez sur le bouton jusqu'à ce que "**C**" apparaisse sur l'écran pour sélectionner la mesure de capacité.

ATTENTION : AVANT d'insérer un condensateur ou un composant capacitif dans la borne d'entrée, assurez-vous que le composant soit totalement déchargé. Certains composants très gros prennent plus de temps à se décharger. Dans ces conditions, veuillez prévoir assez de temps pour une décharge complète. Si la décharge du composant n'est pas effectuée correctement, cela risque d'endommager l'appareil.

- Insérez le condensateur déchargé ou le composant capacitif dans les prises d'entrées ou utilisez les cordons avec les pinces crocodiles et connectez les pinces aux câbles du composant, comme illustré sur le schéma 12.
- 4. Appuyez sur le bouton jusqu'à ce que la fréquence de test désirée soit affichée sur l'écran.
- 5. Appuyez sur le bouton pour choisir soit le facteur D, le facteur Q, l'angle θ ou la mesure ESR pour l'écran secondaire.
- 6. Lisez les indications à l'écran pour connaître les valeurs de capacité mesurées ainsi que les valeurs sélectionnées sur l'écran secondaire.

Schéma 12 – Mesure de capacité

Mesure de résistance

- 1. Appuyez sur le bouton pendant une seconde pour mettre en marche le pont RLC.
- 2. Appuyez sur le bouton jusqu'à ce que "**R**" apparaisse à l'écran pour sélectionner la mesure de résistance.
- 3. Insérez une résistance ou un composant résistif ou utilisez les cordons équipés de pince crocodile et connectez les pinces au fils des composants, comme illustré sur le schéma
- 4. Appuyez sur le bouton jusqu'à ce que la fréquence de test désirée soit affichée sur l'écran.
- 5. Lisez les indications de l'écran pour connaître les valeurs mesurées pour la résistance.

Schéma 13 – Mesure de résistance

Mesure de la résistance en courant continu (DCR)

- 1. Appuyez sur le bouton pendant 2 secondes pour mettre l'appareil en marche.
- 2. Appuyez sur le bouton jusqu'à ce que "DCR" apparaisse sur l'écran pour sélectionner la mesure de résistance en courant continu.
- 3. Insérez l'impédance (résistance, capacité ou inductance) dans les fentes de test ou connectez l'impédance testée (Cordons de test et pinces crocodile ou pinces de test SMD).
- 4. Lisez les indications à l'écran pour la valeur de DCR.

Schéma 14 – Mesure de la résistance en courant continu (DCR)

Mesure d'impédance

- 1. Appuyez sur le bouton pendant une seconde pour mettre en marche le pont RLC.
- 2. Appuyez sur jusqu'à ce que "**Z**" apparaisse sur l'écran pour sélectionner la mesure d'impédance.
- 3. Insérez un composant dans les prises d'entrée ou connectez les câbles de test équipés de pinces crocodile aux fils du composant comme illustré sur le schéma 15.
- 4. Appuyez sur le bouton jusqu'à ce que la fréquence de test mesurée soit affichée sur l'écran.
- 5. Lisez les indications pour connaître les valeurs de l'impédance mesurées.

Schéma 15 – Mesure d'impédance

COMMUNICATION A DISTANCE

Le pont RLC a la capacité de communiquer avec un ordinateur via l'interface mini USB. Une fois l'installation du pilote USB effectuée, l'ordinateur peut contrôler l'appareil grâce au COM virtuel (RS-232). L'interface de communication USB du pont RLC est bidirectionnelle et possède des mémoires tampons d'entrée et sortie de 64 bits, la rendant fiable et efficace pour la transmission de données.

Connexion de l'appareil à l'ordinateur

Suivez les étapes ci-dessous pour configurer la connexion :

- 1. Téléchargez le pilote USB depuis le site <u>www.bkprecision.com</u> ou <u>sefram.com</u>.
- 2. Avec le câble USB inclus, connectez l'extrémité du câble au pont RLC et l'autre extrémité à un port USB libre de l'ordinateur (voir schéma 13).
- Lorsque Windows reconnait la connexion USB, ne suivez pas l'assistant d'installation du pilote de Windows par défaut. Indiquer simplement l'emplacement du pilote USB téléchargé et suivez les instructions pour installer le pilote.
- 4. Lorsque l'installation est terminée, l'ordinateur reconnait l'appareil en tant que dispositif USB (COM virtuel), c'est-à-dire qu'il est détecté comme un port série COM. Windows va assigner automatiquement un port COM à l'appareil. Veuillez vérifier que Windows ait bien assigné le port COM en allant dans le "gestionnaire de périphérique".

Schéma 16 – Connexion USB

Configuration USB (COM virtuel)

L'interface USB est reconnu comme un COM virtuel sur l'ordinateur, les réglages de ce port série doivent être configurés correctement pour établir une communication à distance. Les caractéristiques du Pont RLC 880 sont présentées ci-dessous :

- Vitesse de communication: 9600 bauds
- Bits de données: 8
- Parité: Aucune
- Bit d'arrêt: 1
- Contrôle du flux: Aucun

Fonction USB

Il y a 2 modes qui décrivent le fonctionnement du Pont RLC lorsqu'il est réglé sur le mode communication à distance. Le mode de contrôle à distance et le mode transfert automatique.

Mode de contrôle à distance

Une fois la connexion effectuée, l'envoi des commandes listées dans le chapitre "Protocole des commandes" va automatiquement régler le pont RLC en mode contrôle à distance. Dans le

mode contrôle à distance, l'écran LCD va afficher l'indicateur RMT. Lorsqu'il apparaît, toutes

les touches du panneau avant sont désactivées à l'exception de la touche

Pour sortir du mode contrôle à distance et repasser en mode local, appuyer sur le bouton une fois. L'indicateur RMT disparaît sur l'écran LCD. En appuyant une nouvelle fois sur cette touche, vous passez en mode récupération automatique, il n'y a plus de transfert de données.

Mode de transfert automatique

En étant connecté à l'ordinateur, le pont RLC peut être configuré en mode transfert automatique. Dans ce mode, le pont RLC transfert continuellement des données vers l'ordinateur après chaque cycle de mesure. Les données transférées sont celle de l'affichage principal et secondaire, ainsi que le résultat des comparaisons aux limites (mode tolérance). Ce mode est très utile lorsque vous effectuez des enregistrements rapides de données en utilisant l'ordinateur.

Activer/désactiver le mode transfert automatique

Pour **activer** ou **désactiver** le mode transfert automatique, appuyez sur le bouton . Une fois activé, les données sont toujours transférées après chaque cycle de mesure. Une fois désactivé, il n'y a plus de transfert de données.

Remarque : le mode de transfert automatique peut être désactivé lorsqu'une commande de contrôle à distance est envoyée à l'appareil, l'appareil repasse alors en mode de contrôle à distance. Dans ce cas, l'indicateur RMT apparait à l'écran et le mode de transfert automatique est automatiquement désactivé. Pour réactiver le mode de transfert automatique, appuyez d'abord une fois sur le bouton pour sortir du mode contrôle à distance et retourner au mode local. Puis, appuyez sur le bouton une nouvelle fois pour revenir au mode transfert automatique.

Protocoles des commandes

Aperçu du type de commandes et du format

Toutes les commandes sont entrées soit en majuscules, soit en minuscule. Il y a deux types de commandes de programmation pour cet appareil : celles selon la norme IEEE 488 pour les commandes générales et les commandes SCPI. Certaines commandes sont spécifiques à l'appareil. Elles ne sont pas incluses dans la version 1999.0 des normes SCPI. Cependant, ces commandes sont conçues selon le format SCPI et elles suivent les règles de syntaxe.

Format des commandes générales

La norme IEEE 488 définit les commandes générales comme des commandes qui réalisent des fonctions comme le redémarrage ou une requête du système. Les commandes générales

viennent en général avec l'astérisque '*', et peuvent inclure des paramètres. Plusieurs exemples de commandes générales : *IDN ?, *GTL, *LLO.

Format des commandes SCPI et Format de la requête

Les commandes SCPI contrôlent les fonctions de l'appareil. Une commande du soussystème suit une structure hiérarchique qui consiste généralement d'un mot-clé supérieur (ou racine), d'un ou plusieurs mots-clés d'un niveau inférieur et de paramètres. Les exemples suivants montrent la requête associée à une commande :

- A. FUNCtion:impa L Sélectionne L comme paramètre principal
- B. FUNCtion:impa? Retourne le paramètre principal

La fonction est un mot-clé d'un niveau supérieur avec un mot clé de second niveau, impa, et L est le paramètre de commande. La commande de requête se termine par un point d'interrogation « ? ».

Remarque : les commandes SCPI proviennent des normes IEEE 488.1 et IEEE 488.2. Bien que la norme IEEE 488.2 traite quelques mesures de l'instrument, il s'occupe principalement des commandes générales et de la syntaxe ou des formats de données. Référez-vous à la norme IEEE 488.2 et au manuel de référence SCPI pour plus de détails.

Caractère de terminaison

Une terminaison est un caractère envoyé par un serveur qui identifie la terminaison de la chaîne de commande. Une terminaison valide consiste en une donnée de 2 bits : <CR> (Carriage Return, ASC (&HOD)) ou <LF> (Line Feed, ASC(&HOA)) ou <CR><LF>

Message de réponse

<u>Résultat renvoyé</u>

Après que le pont RLC ait exécuté la commande de requête, le résultat renvoyé sera sous le format :

<Result> + <CR> <LF>

Par exemple, dans le mode transfert automatique, le pont RLC envoie les données mesurées automatiquement lorsque le cycle de mesure est terminé. Le format des données transférées sera affiché au format :

<Mesure principale, mesure ou résultat secondaire, résultat du contrôle de tolérance > + <CR> <LF>

Types de données

Le message est une chaîne ASCII envoyé par le pont RLC en réponse à une requête. Une requête est une commande accompagnée d'un point d'interrogation '?'. La table 5 explique plus les différents types de données.

Type de données	Type de Explication	
<nr1></nr1>	Un entier	+800,-200,100,-50
<nr2></nr2>	Cette représentation numérique a une virgule flottante.	+1.56,-0.001,10.5
<nr3></nr3>	Cette représentation a une virgule flottante et un exposant.	+2.345678E+04 -1.345678E-01
<booléen></booléen>	Un paramètre pour les réglages booléens. Renvoie toujours "0" ou "1" pour une commande de requête booléenne.	ON ou OFF
<littéral></littéral>	Une chaîne est utilisée comme un paramètre de commande avec une forme littérale courte.	HOLD

Table 5 – Type de données des messages renvoyés

Commandes de références

<u>*IDN?</u>

Requête sur l'ID de l'appareil. Renvoie: <modèle de l'appareil>, < version firmware >, <numéro de série>

*LLO

Verrouillage local. Cela signifie que toutes les touches du panneau avant, y compris la touche RMT ne sont pas disponibles. (Le bouton POWER (marche/arrêt) est activé).

*GTL

Retour au mode local et désactivation du mode verrouillé. Si *LLO est envoyé, la seule manière d'utiliser le panneau avant est d'envoyer à la commande *GTL.

*TRG

Déclenche l'appareil pour qu'il effectue une mesure. En raison du test continu automatique, la commande *TRG n'est d'aucune utilité.

Commandes SCPI

Cette section décrit toutes les commandes du pont RLC. Le pont RLC peut accepter les commandes en majuscules et en minuscules.

Symbole du texte	Signification		
[]	Option; peut être omise		
	OR exclusif		
<>	Elément définit		
()	Commentaire		
?	Point d'interrogation		
:	Deux mots-clés de commande séparés		

Table 6 – Convention des symboles SCPI

FREQuency commandes du sous-système

FREQuency <valeur>

Description: Règle la fréquence de test Paramètres: 100, 120, 1000, 10000,100000 ou 100Hz,120Hz,1kHz,10kHz,100kHz selon modèle Exemple: *FREQuency 100* Règle la fréquence sur 100Hz

FREQuency?

Description: Interroge la fréquence de test en cours Renvoie: <100Hz|120Hz|1kHz|10kHz|100kHz>

VOLTage sous-système

VOLTage <valeur>

Description: règle le niveau de test (possible uniquement en L,C,R,Z) Les paramètres sont 0.3, 0.6, 1 ou 3e-1,6e-1,1e0 Exemple: *VOLTage 0.3* Règle le niveau de test sur 0.3 V

VOLTage?

Description: interroge le niveau de test en cours Renvoie: <0.3V|0.6V|1V>

FUNCtion sous-système

FUNCtion:impa < L | C | R | Z | DCR >

Description: Sélectionne le paramètre principal Exemple: *FUNCtion:impa L* Sélectionne L comme le paramètre principal

FUNCtion:impa?

Description: Interroge le paramètre principal Renvoie: <L, C, R, Z, DCR, NULL >

FUNCtion:impb < D | Q | THETA | ESR >

Description: Sélectionne le paramètre secondaire (possible uniquement en L,C,R,Z) Exemple: *FUNCtion:impb D* Sélectionne D comme le paramètre secondaire

FUNCtion:impb?

Description: Interroge le paramètre secondaire (possible uniquement en L,C,R,Z) Renvoie: <D, Q, THETA, ESR, NULL>

FUNCtion:EQUivalent < SERies | parallel | PAL >

Description: Règle le mode équivalent (possible uniquement en L,C,R,Z) Paramètres: SERies — mode en séries Parallel — mode en parallèle Pal — mode en parallèle Exemple: *FUNCtion:EQUivalent SERies* Règle le mode équivalent sur le mode en séries

FUNCtion:EQUivalent?

Description: Interroge le mode équivalent Renvoie: <SER, PAL>

CALCulate sous-système

CALCulate:TOLerance:STATe < ON | OFF >

Description: Active ou désactive le mode tolérance Exemple: CALCulate: TOLerance:STATe ON

CALCulate:TOLerance:STATe?

Description: Interroge le mode tolérance Renvoie : <ON, OFF >

CALCulate:TOLerance:NOMinal?

Description: Interroge la valeur nominale Return: NR3 ou -----(Dépassant la gamme de données)

CALCulate:TOLerance:VALUe?

Description: Interroge la valeur du pourcentage de la tolérance Renvoie: NR3 ou ----- (Dépassant la gamme de données)

CALCulate:TOLerance:RANGe < 1 | 5 | 10 | 20 >

Description: Règle la gamme de tolérance sur 1%,5%,10% ou 20% (20% n'est pas disponible pour certains modèles) Exemple: *CALCulate:TOLerance:RANGe 1* Règle la gamme de tolérance sur 1%

CALCulate:TOLerance:RANGe?

Description: Interroge la gamme de tolérance Renvoie: <BIN1, BIN2, BIN3, BIN4 or ---- > "----" signifie bin hors-service

CALCulate:RECording:STATe < ON | OFF >

Description: Active ou désactive la fonction d'enregistrement Exemple: CALCulate:RECording:STATe ON

CALCulate:RECording:STATe?

Description: Interroge l'état d'enregistrement Renvoie: <ON ou OFF>

CALCulate:RECording:MAXimum?

Description: Interroge la valeur maximum de la fonction d'enregistrement Renvoie: <NR3, NR3> (Paramètres principaux et secondaires, Quand les données excèdent les limites ou qu'il n'y a pas de données, «----» est renvoyé.)

CALCulate:RECording:MINimum?

Description: Interroge la valeur minimum de la fonction d'enregistrement Renvoie: <NR3, NR3> (Paramètres secondaires et primaires, quand les données excèdent la limite ou qu'il n'y a pas de données, «----» est renvoyé.)

CALCulate:RECording:AVERage?

Description: Interroge la valeur moyenne de la fonction enregistrée Renvoie: <NR3, NR3> (Paramètres primaires et secondaires, quand les données excèdent la limite ou qu'il n'y a pas de données, "----"est renvoyé.)

CALCulate:RECording:PRESent?

Description: Interroge la valeur actuelle de la fonction d'enregistrement Renvoie: <NR3, NR3> (Paramètres primaires et secondaires, quand les données excèdent la limite ou qu'il n'y a pas de données, "----"est renvoyé.)

FETCh sous-système

FETCh?

Description: Renvoie la valeur d'affichage primaire et secondaire de la tolérance par rapport au résultat (BIN no.).

Renvoie: <NR3, NR3, NR1> Quand le paramètre primaire est LCR, le paramètre primaire, le paramètre secondaire et le numéro du Godet (BIN). <NR3,NR1> quand le paramètre principal est DCR,

Le paramètre primaire et le numéro de Godet (BIN). Exemple: *FETCh*?

Sommaire des commandes SCPI supportées

Commande	Paramètre	Fonction	
FREQuency	<valeur></valeur>	Règle la fréquence de test	
FREQuency?		Interroge la fréquence de test	
VOLTage	<valeur></valeur>	Règle le niveau de test	
VOLTage?		Interroge le niveau de test	
FUNCtion			
:impa	<littéral></littéral>	Sélectionne le paramètre de l'écran principal	
:impa?		Interroge le paramètre de l'écran principal	

:impb	<littéral></littéral>	Sélectionne le paramètre de l'écran secondaire		
:impb?		Interroge le paramètre de l'écran secondaire		
	<littéral></littéral>	Règle le mode équivalent		
:EQUivalent				
		Interroge le mode équivalent		
:EQUivalent?				
CALCulate				
:TOLerance				
:STATe	<booléen></booléen>	Active/désactive le mode tolérance		
:STATe?		Interroge le mode tolérance		
		Interroge la valeur nominale		
:NOMinal?				
:VALUe?		Interroge le pourcentage de tolérance		
:RANG	<valeur></valeur>	Définit la limite bin		
		Interroge la limite bin		
:RANGe?				
:RECording				
:STATe	<booléen></booléen>	Active/désactive la fonction d'enregistrement		
:STATe?		Interroge l'état d'enregistrement		
		Interroge la valeur maximum de l'enregistrement		
:MAXimum?				
		Interroge la valeur minimum de l'enregistrement		
:MINimum?				
		Interroge la valeur moyenne de l'enregistrement		
:AVERage?				
		Interroge la valeur du test de l'enregistrement		
:PRESent?				
FETCh?		Interroge le résultat de la mesure		

Table 7 – Sommaires des commandes SCPI

Codes d'erreurs

Si les codes ou les paramètres, originaires du bus et transmis au pont RLC sont faux, le pont terminera l'analyse et l'exécution des codes. Au même moment, un code d'erreur sera affiché sur l'écran LCD et un bip se déclenchera.

Ci-dessous la description de l'erreur basée sur le code d'erreur.

- E10: Commande inconnue
- E11: Erreur de paramètre
- E12: Erreur de syntaxe

INFORMATIONS SUPPLEMENTAIRES

Cette section donne des informations supplémentaires pour l'utilisation du pont RLC. Les conseils et les explications de ce chapitre vous permettront de réaliser des mesures rapides et précises.

Choix de la fréquence du test

La fréquence de test peut considérablement affecter les résultats de mesure, surtout pour les mesures d'inductances et sondes condensateurs. Ce chapitre apporte des conseils et des suggestions à appliquer.

Capacité

Lorsque vous effectuez des mesures de capacité, trouver la bonne fréquence est important pour la précision. Généralement, une fréquence de test de 1 kHz ou plus est utilisée pour mesurer des condensateurs qui sont d'une taille de 0.01 μ F ou plus petite. Pour les condensateurs de 10 μ F ou plus, la fréquence utilisée est de 100 Hz ou 120 Hz, ce qui donnera de meilleurs résultats. Les résultats sont aussi évidents car si le même composant est testé avec 1kHz ou 10 kHz, les lectures des mesures peuvent être erronées sur l'écran.

Dans tous les cas, il est préférable de se référer à la fiche technique du fabricant pour déterminer la meilleure fréquence de test du composant.

Inductance

En général, une fréquence de test de 1 kHz est utilisée pour mesurer des inductances qui sont utilisées dans des circuits audio et RF car ces composants fonctionnent avec des fréquences élevées et nécessitent qu'ils soient mesurés à des fréquences élevées telles que 1 kHz ou 10 kHz. Cependant, un signal de test de 120Hz est utilisé pour mesurer des inductances qui servent pour des applications comme par exemple les filtres BF dans les alimentations qui fonctionnent généralement à 50/60Hzavec des fréquences de filtre de 120 Hz.

En général, les inductances en dessous de 2 mH doivent être mesurées à une fréquence à 1 kHz tandis que les inductances au-dessus de 200 H doivent être mesurées à 120 hz.

Dans tous les cas, il est préférable de se référer à la fiche technique du fabricant pour déterminer la meilleure fréquence de test pour les mesures.

Choix du mode en série ou en parallèle

Bien que la fréquence de test puisse affecter considérablement les résultats des mesures, le choix entre le mode de mesure en série ou en parallèle affecte également la précision du pont

RLC surtout dans le cas de mesure de composants capacitifs ou inductifs. Ci-dessous vous trouverez les recommandations à suivre.

Capacitance

Pour la plupart des mesures de capacité, le mode de mesure le plus performant est le mode parallèle. Ainsi, le pont RLC se met par défaut dans ce mode lorsque le mode capacité est sélectionné. La plupart des condensateurs ont des facteurs de dissipation très bas (résistance interne élevée) comparé à l'impédance des condensateurs. Dans ce cas, la résistance interne en parallèle a un impact négligeable sur les mesures.

Cependant dans certaines conditions, le **mode série** est préférable. Sinon, le pont RLC peut afficher des résultats erronés ou peu précis. Le mode série est utilisé car les gros condensateurs ont souvent des facteurs de dissipation élevé et une résistance interne plus basse.

Inductance

Pour la plupart des mesures d'inductance, le mode le plus performant est le mode série. Ainsi, le pont RLC se met par défaut dans ce mode lorsque le mode d'inductance est sélectionné. Ainsi les mesures de Q (facteur de qualité) seront précises.

Cependant dans certains cas, le mode en parallèle est préférable. Par exemple, des inductances à noyau de fer fonctionnant à des fréquences élevées dans lesquels les courants de Foucault et l'hystérésis deviennent significatifs, nécessitent des mesures en mode en parallèle pour des résultats précis.

Problèmes de précision

Dans certains cas particuliers, des erreurs peuvent se produire dans la mesure de composants capacitifs, inductifs et résistifs.

Capacitance

Lors de la mesure de condensateurs, il est préférable que le facteur de dissipation soit bas. Les condensateurs électrolytiques ont intrinsèquement un facteur plus élevé dû à leurs caractéristiques de fuite interne élevée. Dans certains cas, le facteur D (facteur de dissipation) est important, la précision des mesures pourrait s'en trouvée affectée.

Inductance

Certaines inductances sont destinées à fonctionner selon une certaine polarisation pour obtenir une valeur d'inductance. Cependant, le pont RLC 880 ne peut pas produire une telle polarisation et une polarisation externe ne peut être appliquée à l'appareil car elle pourrait l'endommager. C'est pourquoi dans certains cas, les mesures d'inductance peuvent ne pas correspondre aux spécifications du fabricant. Il est important de vérifier si la spécification dépend de la polarisation AC ou non.

Résistance

Lors de la mesure de la résistance, il est important de savoir qu'il y a deux types de mesure. L'un d'eux est la mesure de résistance en DC. L'autre est la mesure de résistance en AC. Le modèle 880 utilise la méthode de mesure de résistance AC et ne permet pas la mesure de résistance en DC. C'est pourquoi en mesurant un composant résistif destiné à être mesuré avec une polarisation DC, les résultats de mesure seront erronés ou imprécis. Avant de mesurer la résistance, vérifiez si le composant sous test requiert une méthode de mesure à polarisation AC ou DC. En fonction de la méthode utilisée, les résultats varient.

Borne de garde

Une des bornes d'entrée a une étiquette "**GUARD**". Cette borne ne doit pas être utilisée systématiquement. Néanmoins dans certains cas cette borne est très utile et en particulier dans deux cas :

Si l'utilisateur utilise des fils de test blindés, la borne de garde peut être utilisée pour se connecter au blindage des fils de test. Ce procédé peut être très utile lorsque vous effectuez des mesures sur des composants résistifs de valeur élevée. Par exemple, lorsque vous mesurez une résistance de 10 MΩ avec des fils de test, la lecture peut paraitre instable. En connectant le blindage des fils de test à la borne de garde, la lecture se stabilise dans certains cas. La borne de garde est également utilisée pour minimiser le bruit et les effets parasites venant des composants mesurés, ce qui permet des résultats de grande précision.

SPECIFICATIONS

Voici quelques remarques concernant les spécifications du pont RLC 880. * Les spécifications peuvent être modifiées sans préavis.

Notes:

- 1. Les mesures sont effectuées sur les bornes de test.
- 2. Les mesures sont effectuées après une calibration.
- 3. Le DUT et les fils de test doivent être raccordés à la borne de garde, si nécessaire.
- 4. Temps de stabilisation de 30 minutes et fonctionnement de l'appareil à 23°C ± 5°C, <75% H.R.
- 5. Q est l'inverse du DF.
- 6. Précisions données de 10% à 100% de la gamme. En dehors, les valeurs mesurées doivent être considérées comme indicatives.
- 7. L'appareil est alimenté par pile.
- 8. --- signifie mode de mesure série ou parallèle.

Spécifications générales

	880				
Paramètres mesurés	L/C/R/Z/DCR/D/Q/θ/ESR				
Fréquence de test	100 Hz, 120 Hz, 1 kHz, 10 kHz, 100 kHz (réglage du test)				
Précision de 0.02% de	100Hz, 120.048Hz, 1 kHz, 10 kHz (fréquence actuelle)				
la fréquence choisie					
Mode tolérance	1%, 5%, 10%, 20%				
Rétro-éclairage	Oui				
Amplitude du signal	0.3 Veff, 0.6 Veff, 1 Veff.				
(typique)	Signal DCR: 1Vdc				
Circuit de mesure	Mode en séries / mode en parallèle				
Précision de base	0.1% (Voir les spécifications de la précision pour plus de détails).				
Changement de	Auto				
gammes					
Measuring Terminals	3-bornes, 5-broches				
Cadence de mesure	LCRZ 4 mes/sec,1.5mas/sec				
	DCR 3 mes/sec,2.5mes/sec				
Temps de réponse	680 ms				
(typique)					
Arrêt automatique	5, 15, 30, 60 mins, inactif				
Fonction LCR	Manuelle, Automatique				
automatique					
Impédance de sortie	100Ω				
Affichage	Maximum de points des paramètres primaires: 40,000 points ; D /				
	Q / θ Résolution maximum des paramètres secondaires: 0.0001.				
Indication pile faible	Approximativement a 6.8 Volts				
Autonomie de la pile	16 Heures (typique) sans rétro-éclairage et pile alcaline neuve.				
	6 Heures (typique) sans rétro-éclairage et avec un accumulateur Ni- MH complètement chargée				
Temps de charge et	Max.: 160min. Max. Courant: max 100mA				
courant (typique)					
Courant de	Max.:35mA				
fonctionnement (sans	Typique : 25mA (@1kHz, 0.6 Vrms, charge 100Ω)				
le rétro-éclairage)					
Courant de veille	Max. :11µA (typique)				
(arrêt)					
Alimentation	1) pile DC 9V				
	2) Adaptateur externe : DC				
	12 Vmin –15 Vmax.				

	(délivrant 50 mA Min.)		
Conditions de	Température 0°C à 40°C		
fonctionnement	Humidité relative ≤90% H.R.		
Température de	-0 °C à +50 °C); 0-90 % Humidité relative		
stockage			
Dimensions (L/W/H)	190mm *90mm *41mm		
Masse	350 g		

Spécifications de précision

Conditions de test:

- 1. Température: 23°C±5°C; Humidité: ≤75% R.H
- 2. Opérationnel après 10 minutes de temps de chauffe.
- 3. Test dans les broches de mesure sur le panneau avant.
- 4. Mesures effectuées après une calibration (circuit ouvert, court-circuit).
- 5. Test dans le mode équivalent recommandé
- 6. Indicateur de précision: ± (lecture en % + nombre de digits)
- 7. Si la mesure actuelle excède la gamme d'affichage indiquée dans la table ci-dessous, la précision n'est pas spécifiée.
- 8. Si le niveau de test est de 0.3 V il faut doubler la précision la précision dans la table cidessous
- 9. Explications des indices utilisés :
 S-équivalent en séries; p-équivalent en parallèle;
 e: précision.

Inductance (L) et facteur de gualité (Q) <u>Gamme</u>		<u>Gamme d'affichage</u>	<u>Précision</u> Le	De *	<u>Mode</u> <u>Equivalent</u> <u>recommandé</u>
00Hz/120Hz	1000H	400.0H~1000.0H	1%+3 digits	1.00%+3 digits	En parallèle
	400H	40.00H~399.99H	0.35%+2 digits	0.35%+2 digits	En parallèle
	40H	4.000H~39.999H	0.1%+2 digits	0.1%+2 digits	En parallèle
	4H	400.0mH~3.9999H	0.1%+2 digits	0.1%+2 digits	
1	400mH	40.00mH~399.99mH	0.1%+2 digits	0.1%+2 digits	En séries

	40mH	4.000mH~39.999mH	0.45%+2 digits	0.45%+2 digits	En séries
	4mH	0uH~3.999mH	1.4%+5 digits	Non spécifié	En séries
	100H	40.00H~100.00H	1 %+3 digits	1%+3 digits	En parallèle
	40H	4.000H~39.999H	0.35%+2 digits	0.35%+2 digits	En parallèle
2	4H	400.0mH~3.9999H	0.1%+2 digits	0.1%+2 digits	En parallèle
[kH]	400mH	40.00mH~399.99mH	0.1%+2 digits	0.1%+2 digits	
	40mH	4.000mH~39.999mH	0.1%+2 digits	0.1%+2 digits	En séries
	4mH	400.0uH~3.9999mH	0.45%+2 digits	0.45%+2 digits	En séries
	400µH	0.0uH~399.9µH	1.4%+5 digits	Non spécifié	En séries
	1000mH	400.0mH~999.99mH	0.8%+3 digits	0.8%+3 digits	En parallèle
	400mH	40.00mH~399.99mH	0.35%+2 digits	0.35%+2 digits	En parallèle
ζHz	40mH	4.000mH~39.999mH	0.1%+2 digits	0.1%+2 digits	
10	4mH	400.0uH~3.9999mH	0.3%+2 digits	0.3%+2 digits	En séries
	400µH	40.00uH~399.99µH	0.45%+2 digits	0.45%+2 digits	En séries
	40μΗ	0.00uH~39.99µH	1.4%+5 digits	Not Specified	En séries
	100mH	40.00mH~399.99mH	1.5%+5 digits	1.5%+5 digits	En parallèle
	40mH	4.000mH~39.999mH	1.5%+2 digits	1.5%+2 digits	En parallèle
LOOkHz	4mH	400.0uH~3.9999mH	0.5%+2 digits	0.5%+2 digits	
	400µH	40.00uH~399.99µH	0.5%+2 digits	0.5%+2 digits	En séries
	40µH	4.000uH~39.999µH	0.8%+5 digits	0.8%+5 digits	En séries
	4μΗ	0.000uH~3.999µH	2.5%+10 digits	Non spécifié	En séries

*Remarque : La précision de De est évaluée quand De <0.5

Le facteur de qualité (Q) et la précision Qe est calculée par la formule suivante : Pour $Q_x \times D_e \le 1$,

$$Q_e = \pm \frac{Q_x^2 \times D_e}{1 \mp Q_x \times D_e}$$

 $1 + Q_x \times D_e$ Q_x est la valeur de mesure.

Capacitance(C) et Dissipation (D)

Gamme		Gamme d'affichage	Précision		Mode
			Се	De*	recommandé
z	20mF	4.000mF~20.000mF	5%+5 digits	5%+5 digits	En séries
20H	4mF	400.0μF~3.9999mF	1%+3 digits	1%+3 digits	En séries
lz/1	400µF	40.00µF~399.99µF	0.35%+2 digits	0.35%+2 digits	En séries
HOO	40µF	4.000μF~39.999μF	0.1%+2 digits	0.1%+2 digits	En séries
1	4µF	400.0nF~3.9999μF	0.1%+2 digits	0.1%+2 digits	

-					
	400nF	40.00nF~399.99nF	0.1%+2 digits	0.1%+2 digits	En parallèle
	40nF	4.000nF~39.999nF	0.35%+3 digits	0.35%+3 digits	En parallèle
	4nF	0pF~3.999nF	1.25%+5 digits	Non spécifié	En parallèle
	1000µF	400.0µF~999.99µF	2%+5 digits	2%+5 digits	En séries
	400µF	40.00µF~399.99µF	1%+3 digits	1%+3 digits	En séries
	40µF	4.000μF~39.999μF	0.35%+2 digits	0.35%+2 digits	En séries
Ηz	4μF	400.0nF~3.9999μF	0.1%+2 digits	0.1%+2 digits	En séries
1k	400nF	40.00nF~399.99nF	0.1%+2 digits	0.1%+2 digits	
	40nF	4.000nF~39.999nF	0.1%+2 digits	0.1%+2 digits	En parallèle
	4nF	400.0pF~3.9999nF	0.35%+3 digits	0.35%+3 digits	En parallèle
	400pF	0.0pF~39.99nF	1.25%+5 digits	Non spécifié	En parallèle
	100µF	40.00μF~100.00μF	3%+5 digits	3%+5 digits	En séries
	40µF	4.000μF~39.999μF	1.5%+3 digits	1.5%+3 digits	En séries
	4μF	400.0nF~3.9999μF	0.35%+2 digits	0.35%+2 digits	En séries
μz	400nF	40.00nF~399.99nF	0.1%+2 digits	0.1%+2 digits	En séries
10	40nF	4.000nF~39.999nF	0.1%+2 digits	0.1%+2 digits	
	4nF	400.0pF~3.9999nF	0.1%+2 digits	0.1%+2 digits	En parallèle
	400pF	40.00pF~399.99pF	0.35%+3 digits	0.35%+3 digits	En parallèle
	40pF	0.00pF~39.99pF	1.5%+5 digits	Not Specified	En parallèle
	10µF	4.000μF~10.000μF	6%+20 digits	6%+20 digits	En séries
	4μF	400.0nF~3.9999μF	2.5%+10 digits	2.5%+10 digits	En séries
	400nF	40.00nF~399.99nF	0.8%+5 digits	0.8%+5 digits	En séries
7	40nF	4.000nF~39.999nF	0.5%+2 digits	0.5%+2 digits	En séries
00kł	4nF	400.0pF~3.9999nF	0.5%+2 digits	0.5%+2 digits	
1(400pF	40.00pF~399.99pF	0.8%+2 digits	0.8%+2 digits	En parallèle
	40pF	4.000pF~39.999pF	1.2%+5 digits	1.2%+5 digits	En parallèle
	4pF	0.000pF~4.999pF	Non spécifié	Non spécifié	En parallèle

Impédance (Z) and Angle de Phase (ϑ)

Gamme		Gamme d'affichage	Précis	Mode équivalent	
			Ze	θe	recommandé
	10MΩ	4.000ΜΩ~10.000ΜΩ	3%+5 digits	±1.75°	En parallèle
0Hz	$4 M\Omega$	400.0kΩ~3.9999MΩ	1%+3 digits	±0.75°	En parallèle
10	400k Ω	40.00kΩ~399.99kΩ	0.35%+2 digits	±0.25°	En parallèle

	$40 \mathrm{k}\Omega$	4.000kΩ~39.999kΩ	0.1%+2 digits	±0.1°	En parallèle
	4kΩ	400.0Ω~3.9999kΩ	0.1%+2 digits	±0.1°	
	400Ω	40.00Ω~399.99Ω	0.1%+2 digits	±0.1°	En séries
	40Ω	4.000Ω~39.999Ω	0.35%+2 digits	±0.25°	En séries
	4Ω	0.4000Ω~3.9999Ω	1.00%+3 digits	±0.60°	En séries
	0.4Ω	0.0000Ω~0.3999Ω	3.00%+5 digits	Non spécifié	En séries
	$10 M\Omega$	4.000MΩ~10.000MΩ	8%+ 20 digits	±4.6°	En parallèle
	$4 M\Omega$	400.0kΩ~3.9999MΩ	3%+10 digits	±1.75°	En parallèle
	400k Ω	40.00kΩ~399.99kΩ	1.2%+5 digits	±0.69°	En parallèle
7	$40 \mathrm{k}\Omega$	4.000kΩ~39.999kΩ	0.8%+2 digits	±0.46°	En parallèle
OKF	4kΩ	400.0Ω~3.9999kΩ	0.5%+2 digits	±0.3°	
10	400Ω	40.00Ω~399.99Ω	0.5%+2 digits	±0.3°	En séries
	40Ω	4.000Ω~39.999Ω	0.8%+5 digits	±0.46°	En séries
	4Ω	0.4000Ω~3.9999Ω	2.5%+10 digits	±1.43°	En séries
	0.4Ω	0.0000Ω~0.3999Ω	6%+20 digits	Non spécifié	En séries

*Remarque : La précision de De n'est pas donnée quand De <0.5

DCR

	Gamme	Gamme d'affichage	Précision
DCR	20ΜΩ	4.000ΜΩ~20.000ΜΩ	2 %+20 digits
	$4 M\Omega$	400.0k Ω ~3.9999M Ω	1%+10 digits
	400k Ω	40.00kΩ~399.99kΩ	0.5%+5 digits
	40k Ω	4.000kΩ~39.999kΩ	0.1%+2 digits
	4kΩ	400.0Ω~3.9999kΩ	0.1%+2 digits
	400Ω	40.00Ω~399.99Ω	0.1%+2 digits
	40Ω	4.000Ω~39.999Ω	0.1%+2 digits
	4Ω	0.4000Ω~3.9999Ω	0.5%+10 digits
	0.4Ω	0.0000Ω~0.3999Ω	2%+20 digits

Résistance série équivalente

La précision de la résistance en série équivalente est calculée selon la formule :

Remarque: Les précisions de ESR et RS sont identiques.

Résistance parallèle équivalent

La précision de la résistance parallèle équivalente est calculée selon la formule :

$$Rpe = \pm \frac{R_{px} \times \phi_e}{D_x \mp \phi_e}$$

Rpx est la valeur de mesure de Rp, Dx est la valeur de dissipation.

MAINTENANCE

ATTENTION

Ne tentez jamais de réparer votre appareil. La maintenance doit être réalisée par du personnel qualifié.

Réparation

Si l'appareil venait à tomber en panne, vérifiez la pile et les cordons de test. Remplacez-les si nécessaire. S'il l'appareil ne fonctionne toujours pas, assurez-vous de procéder correctement en vous référant aux instructions.

Lors de la réparation, utilisez les pièces de rechange d'origine.

Remarque : le pont RLC doit être hors-tension lors du remplacement de la pile. Référez-vous à la section « Installation de la pile ».

Nettoyage

Afin d'éviter tout risque de choc électrique et pour éviter d'endommager l'électronique interne, ne jamais faire rentrer d'eau dans l'appareil. Dans le cas échéant, enlevez immédiatement la pile et n'utilisez pas l'instrument. Ceci endommagera l'appareil et annulera votre garantie.

Avant de nettoyer cet appareil, assurez-vous qu'il est éteint et débranchez l'adaptateur secteur externe. Nettoyez l'appareil avec un chiffon doux et humide. Ne jamais utiliser de solvants, de détergents ou de tissus abrasifs. Après nettoyage et avant utilisation, assurez-vous toujours que l'appareil soit sec avant de le réutiliser.

SEFRAM

SEFRAM Instruments SAS 32, Rue Edouard MARTEL F42100 – SAINT ETIENNE France

> Tel : 04 77 59 01 01 Fax : 04 77 57 23 23

E-mail : sales@sefram.fr

WEB : www.sefram.fr